首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明存在x0∈使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明存在x0∈使得F’’(x0)=0.
admin
2016-10-20
147
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明存在x
0
∈
使得F’’(x
0
)=0.
选项
答案
显然F(0)=[*],于是由罗尔定理知,存在[*],使得F’(x
1
)=0.又 F’(x)=2(sinx-1)f(x)+(sinx-1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在[*],使得F’’(x*
0
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是存在x
0
=2π+x*
0
,即[*],使得 F’’(x
0
)=F’’’(x*
0
)=0.
解析
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明存在
,使得F’’(x*
0
)=0即可.
转载请注明原文地址:https://kaotiyun.com/show/10T4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
0
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
考虑一个系统由各元件按照图1-5连接而成,其中元件1和元件2并联而成一个子系统,子系统工作当且仅当元件1和元件2至少有一个工作;元件3和元件4串联而成一个子系统,子系统工作当且仅当一元件3和元件4都工作.已知各元件工作的概率均为0.9,且各元件是否工作是相
设空间区域Ω={(x,y,z)|x2+y2+z2≤R2,z≥0),Ω1={(x,y,z)|x2+y2+z2≤R2,x≥0,y≥0,z≥0},则下列选项中正确的是___________.
试求下列微分方程在指定形式下的解:(1)y〞+3yˊ+2y=0,形如y=erx的解;(2)x2y〞+6xyˊ+4y=0,形如y=xλ的解.
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为,设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
随机试题
我国征收排污费的类别有()
单件小批生产的企业,其成本计算期的设计为_______、________。
下列哪些器官活动与维持内环境稳态有关
白消安为
CSF中葡萄糖含量明显减少的疾病是
甲乙双方签订一份合同,合同约定:甲方按照乙方要求自丙处购买某型号设备,该设备由甲方所有,交乙方使用,乙方支付租金。则该合同性质为()。
某国家重点扶持的高新技术企业经主管税务机关核定,该企业2007年亏损50万元,2008年盈利55万元,那么,该企业2008年要缴纳的所得税为()万元。
()是教育司法活动的灵魂和生命。
以下属于影响性技巧的是()。
(2012上项管)配置管理中有一项工作是变更控制,其中配置状态的过程如下图所示:在这个状态变化过程中,图中的(1)、(2)、(3)三个状态依次为______。
最新回复
(
0
)