首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明存在x0∈使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明存在x0∈使得F’’(x0)=0.
admin
2016-10-20
88
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明存在x
0
∈
使得F’’(x
0
)=0.
选项
答案
显然F(0)=[*],于是由罗尔定理知,存在[*],使得F’(x
1
)=0.又 F’(x)=2(sinx-1)f(x)+(sinx-1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在[*],使得F’’(x*
0
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是存在x
0
=2π+x*
0
,即[*],使得 F’’(x
0
)=F’’’(x*
0
)=0.
解析
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明存在
,使得F’’(x*
0
)=0即可.
转载请注明原文地址:https://kaotiyun.com/show/10T4777K
0
考研数学三
相关试题推荐
[*]
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
某城有N辆车,车牌号从1到N,某观察员在某地把所遇到的n辆车的牌号抄下(可能重复抄到车牌号),问为抄到最大号码正好k的概率(1≤k≤N)是多少?
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
随机试题
国民收入可以表示为()
A、下颌后牙颊尖舌斜面从中央窝沿上后牙舌尖颊斜面向舌侧继续滑行,约到一半处分离B、下颌后牙舌尖颊斜面沿上后牙颊尖舌斜面向舌侧继续滑行,约到一半处分离C、工作侧上下颌后牙的同名尖彼此相对D、由正中袷向上、向前、向上至对刃E、由
不符合代理法律特征的内容是( )。
简述《国家学生体质健康标准》中50米跑的测试方法。
【2015年下】学科组长匡老师从教30年,每逢他们组有新人职的老师,匡老师都会把自己的教案直接提供给他们,要求他们严格按照自己的教学设计开展教学,并坚持推门听课。匡老师的做法()。
根据课程内容的组织形式,可以把课程类型分为()。
圆A的半径比圆B的半径长2厘米,则我们可以肯定圆A与圆B的()。
有以下程序 #include<stdio.h> main() { intk=2,m=4,n=6,*pk=&k,*pm=&m,*p; *(p=&n)=*pk*(*pm); printf("%d\n",n); } 程序运行后的输出
•Readtheatriclebelowabouttheneedofemployees.•ChoosethecorrectwordtofilleachgapfrOmA.BorContheopposit
Howdidthemangetthetickettotravelintospace?
最新回复
(
0
)