首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
admin
2019-01-05
73
问题
已知A是3阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
选项
答案
设A是矩阵A的任一特征值,口是属于特征值A的特征向量,则Aα=λα(α≠0),于是 A
n
α=λ
n
α. 那么用α右乘A
4
+2A
3
+A
2
+2A=0得(λ
4
+2λ
3
+λ
2
+2λ)α=0. 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=A(λ
3
+2λ
2
+λ+2)=λ(λ+2)(λ
2
+1)=0. 由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或-2. 由于实对称矩阵必可相似对角化,且秩r(A)=r(A)=2,所以A的特征值是0,-2,-2. 因A-A,则有A+E~A+E=[*],所以秩r(A+E)=r(A+E)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/10W4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续,且满足f(0)=1,f’(x)=f(x)+ax一a,求f(x),并求a的值使曲线y=f(x)与x=0,y=0,x=1所围平面图形绕x轴旋转一周所得的体积最小.
设f(x)在[a,b]上连续,且f(x)>0,又F(x)=∫axf(t)dt+∫6x证明:(1)F’(x)≥2;(2)F(x)=0在[a,b]内有且仅有一个实根.
计算二重积分其中D={(x,y)|0≤x≤1,0≤y≤1}。
在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为________。
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=________。
设A,B均为n阶实对称矩阵,若A与B合同,则()
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明:(Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;(Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则
A、 B、 C、 D、 B这是无界函数的反常积分,x=±1为瑕点,与求定积分一样,作变量替换x=sint,其中T<,故选B。
设f(u,υ)具有连续偏导数,且fu’(u,υ)+fυ’(u,υ)=sin(u+υ)eu+υ,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒丙中,最后从丙盒内再任取1个球,试求:(I)从丙盒内取出的是白球的概率;(Ⅱ)若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
随机试题
治疗时采用4个小电极,一路的2个电极置于痉挛肌两端肌腱处,另一路的2个电极置于拮抗肌肌腹的两端。这是何种治疗
正常产程进展的标志是
男孩,8岁,参加学校的体能训练,为了了解其身体发育情况,对其进行相关指标测量。按生长发育公式,该年龄儿童的身长是()
关于模板拆除施工安全的基本要求,下列说法中正确的有()。
一般来说,中小企业实施会计电算化的合理做法是( )。
下列关于特别行政区基本法特点的表述,不正确的是()。(2008年单选30)
关于变更控制程序的相关描述,正确的是(58)。
对于具有n个元素的一个数据序列,若只需得到其中第k个元素之前的部分排序,最好采用(59),使用分治(Divide and Conquer)策略的是(60)算法。
Mostpeoplewhotravellongdistancescomplainofjetlag(喷气飞行时差反应).Jetlagmakesbusinesstravelerslessproductiveandmorepr
Americanhighereducationstandsonthebrinkofchaos.Neverhavesomanyspentsolonglearningsolittle.Thepresentcrisis
最新回复
(
0
)