首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
admin
2019-01-05
51
问题
已知A是3阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
选项
答案
设A是矩阵A的任一特征值,口是属于特征值A的特征向量,则Aα=λα(α≠0),于是 A
n
α=λ
n
α. 那么用α右乘A
4
+2A
3
+A
2
+2A=0得(λ
4
+2λ
3
+λ
2
+2λ)α=0. 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=A(λ
3
+2λ
2
+λ+2)=λ(λ+2)(λ
2
+1)=0. 由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或-2. 由于实对称矩阵必可相似对角化,且秩r(A)=r(A)=2,所以A的特征值是0,-2,-2. 因A-A,则有A+E~A+E=[*],所以秩r(A+E)=r(A+E)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/10W4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…是相互独立的随机变量序列,Xn服从参数为n(n=1,2,…)的指数分布,则下列不服从切比雪夫大数定律的随机变量序列是().
已知
二阶常系数非齐次线性方程y"—4y’+3y=2e2x的通解为y=________。
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为戈的指数分布,则E(XY)=________。
设随机变量X的概率密度为对X独立地重复观察4次,用Y表示观察值大于的次数,求Y2的数学期望。
设A,B均为n阶实对称矩阵,若A与B合同,则()
假设A是n阶方阵,其秩r(A)=r<n,那么在A的n个行向量中()
设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量。
设,B为三阶非零矩阵,的解向量,AX=a3有解.(1)求常数a,b.(Ⅱ)求BX=0的通解.
随机试题
审美趣味的外在表现是
下面疾病可表现为前肉饱满的是
急性或亚急性皮炎而无渗液者可选用慢性局限性浸润肥厚性皮肤病者可选用
判断膀胱破裂最简便的检查方法是()
胎儿形成的妊娠周数是
A.2天内B.2~3天C.3天内D.3~4天E.5天
6岁女孩,诊断为“肾病综合征”,因水肿、尿少,给予利尿消肿治疗,患儿发生腹胀,乏力,膝反射减弱,心音低钝,心电图出现U波,治疗中需及时补充
案情:高某(男)与钱某(女)在网上相识,后发展为网恋关系,其间,钱某知晓了高某一些隐情,并以开店缺钱为由,骗取了高某20万元现金。见面后,高某对钱某相貌大失所望,相处不久更感到她性格古怪,便决定断绝关系。但钱某百般纠缠,最后竟以公开隐情相
国家法定休假日、休息日不计入年休假的假期。()
古名“桑泊”指现在的()。
最新回复
(
0
)