首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
admin
2019-01-05
36
问题
已知A是3阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
选项
答案
设A是矩阵A的任一特征值,口是属于特征值A的特征向量,则Aα=λα(α≠0),于是 A
n
α=λ
n
α. 那么用α右乘A
4
+2A
3
+A
2
+2A=0得(λ
4
+2λ
3
+λ
2
+2λ)α=0. 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=A(λ
3
+2λ
2
+λ+2)=λ(λ+2)(λ
2
+1)=0. 由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或-2. 由于实对称矩阵必可相似对角化,且秩r(A)=r(A)=2,所以A的特征值是0,-2,-2. 因A-A,则有A+E~A+E=[*],所以秩r(A+E)=r(A+E)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/10W4777K
0
考研数学三
相关试题推荐
设I=|xy|dxdy,其中D是以a为半径、以原点为圆心的圆,则I的值为().
用配方法化二次型f(x,y,z)=x2+2y2+5z2+2xy+6yz+2zx为标准形,并求所用的可逆线性变换.
设α1,α2,α3,α4为四维非零列向量,A=[α1,α2,α3,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T,则方程组A*X=0的基础解系为().
设函数f(x)在x=x0处具有二阶导数,且f’(x0)=0,f"(x0)≠0,证明当f"(x0)>0,f(x)在x=x0处取得极小值。
积分∫02dx∫x2e—y2=________。
设y=y(x)是区间(—π,π)内过的光滑曲线,当—π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0。求函数y(x)的表达式。
设f(x)=∫—1xt|t|dt(x≥—1),求曲线y=f(x)与x轴所围封闭图形的面积。
假设A是n阶方阵,其秩r(A)=r<n,那么在A的n个行向量中()
设总体X的概率密度函数为f(x)=(—∞<x<+∞),X1,X2,…,Xn为取自总体X的简单随机样本,其样本方差为S2,则E(S2)=________。
设f(u,υ)具有连续偏导数,且fu’(u,υ)+fυ’(u,υ)=sin(u+υ)eu+υ,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
随机试题
关于抵消分录以下说法中正确的有()
肺血少、右室压力高的是婴儿期可出现肺动脉高压的是
阴阳不相维系,可出现()
关于债务重组准则中以非现金资产清偿债务的,下列说法中,正确的有()。
盘点库存现金前,需要将现金日记账与现金收付原始凭证相核对,核对的内容包括()。
小刘老师因家庭琐事心烦,组织活动时大声斥责孩子,致使孩子们不知所措。面对这种现象,小刘老师应该()、不断提升个人修养与行为。
()对于汽车相当于公寓对于()
下列各句中,没有语病的一句是()。
最漂亮的花中有一些是玫瑰花,然而,我们也要看到,所有的玫瑰花都是带刺的,并且所有带刺的玫瑰花总会伤到手。根据以上叙述,下列哪项可能为假?
目前广泛使用的Internet,其前身可追溯到()。
最新回复
(
0
)