首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
admin
2017-01-21
55
问题
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解。
选项
答案
由AB=0知,B的每一列均是Ax=0的解,且r(A)+r(B)≤3。 (1)若k≠9,则r(B)=2,于是r(A)≤1,显然r(A)≥1,故r(A)=1。可见此时Ax=0的基础解系所含解向量的个数为3–r(A)=2,矩阵B的第一列、第三列线性无关,可作为其基础解系,故Ax=0的通解为:x=k
1
(1,2,3)
T
+k
2
(3,6,3)
T
,k
1
,k
2
为任意常数。 (2)若k=9,则r(B)=1,从而1≤r(A)≤2。 ①若r(A)=2,则Ax=0的通解为:x=k.(1,2,3)
T
,k
1
为任意常数。 ②若r(A)=1,则Ax=0的同解方程组为:ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为 [*]k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/l9H4777K
0
考研数学三
相关试题推荐
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设函数f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设函数f(x),g(x)在[a,b]上连续,g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
设A为n阶实对称矩阵,秩﹙A﹚=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
随机试题
《中共中央关于教育体制改革的决定》颁布于()
决定胶片平整度的层面是
A、VLVHB、铰链区C、CLD、CH2E、CHIgG补体(Clq)结合的部位
早期发现宫颈癌的有效方法是
不属于湿弱地基加固的措施是()。
会计科曰是对()的具体内容进行分类核算的项目。
政府采购信息应当在省级以上财政部门指定的政府采购信息发布媒体上向社会公开发布。()
某制药厂(一般纳税人)主要生产各类药品,2008年4月至5月发生如下经济业务:(1)4月份销售应税药品,收到货款20000元(含税),由本厂运输部门运输,收到运费3400元;其中建设基金1200元,装卸费300元。(2)4月份外购生产用材料取得增值税专
【B1】【B5】
Hewasfinedbythetrafficpolicemanforherodehisbicycleonthe______sideofthestreet.
最新回复
(
0
)