首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明当x∈(-1,1)时成立函数恒等式arctanx=
证明当x∈(-1,1)时成立函数恒等式arctanx=
admin
2016-10-20
52
问题
证明当x∈(-1,1)时成立函数恒等式arctanx=
选项
答案
令f(x)=arctanx,g(x)=[*],要证f(x)=g(x)当x∈(-1,1)时成立,只需证明:1°f(x),g(x)在(-1,1)可导且当x∈(-1,1)时f’(x)=g’(x); 2° 存在x
0
∈(-1,1)使得f(x
0
)=g(x
0
). 由初等函数的性质知f(x)与g(x)都在(-1,1)内可导,计算可得 [*] 即当x∈(-1,1)时f’(x)=g’(x).又f(0)=g(0)=0,因此当x∈(-1,1)时f(x)=g(x),即恒等式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/14T4777K
0
考研数学三
相关试题推荐
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
一个家庭中有两个小孩.(1)已知其中有一个是女孩,求另一个也是女孩的概率;(2)已知第一胎是女孩,求第二胎也是女孩的概率.
求由下列曲线所围成的闭区域D的面积:(1)D是由直线ax+by=r1,ax+by=r2,cx+dy=s1,cx+dy=s2所围成的平行四边形闭区域,其中r1<r2,s1<s2,ad-bc≠0;(2)D是由曲线xy=4,xy3=4,xy=8,y3=15所
证明下列不等式:
利用格林公式,计算下列第二类曲线积分:
证明下列函数当(x,y)→(0,0)时极限不存在:
验证当0<x≤1/2时,按公式ex≈1+x+x2/2+x3/6计算ex的近似值时所产生的误差小于0.01,并求的近似值,使误差小于0.01.
(1)如果点P(x,y)以不同的方式趋于Po(xo,yo)时,f(x,y)趋于不同的常数,则函数f(x,y)在po(xo,yo)处的二重极限____________.(2)函数f(x,y)在点(xo,yo)连续是函数在该点处可微分的___________
随机试题
某歌厅购买了若干正版卡拉OK光盘后,未经任何人的许可,直接将该光盘用于其经营活动。对该歌厅的行为应如何定性?()
下列各组药物中,均具有收敛止血功效的药物有
对于酶的化学修饰,不正确的是
可表示心血管系统内血流充盈程度的指标是
下列描述不是鳞状细胞癌特点的是
A.特比萘芬B.更昔洛韦C.灰黄霉素D.阿昔洛韦E.两性霉素BHSV感染的首选药物是
与五苓散中桂枝配伍作用不相关的项是
甲在某商场看中—套沙发。因所带的钱不够,遂与商场约定,先预付500元,待第二天付清余款后取货。双方在选定的沙发上作了记号。当晚,商场失火,该沙发也被烧毁。商场要求甲付清余款,遭到甲的拒绝。下列表述正确的是:()。
中国公民在某国法院进行民事诉讼,其申请回避的权利受到限制,中国法院于是也对该国公民在中国的民事诉讼中申请回避的权利加以限制,这是什么原则的体现?
全面结算会员期货公司应当在定期报告中向中国证监会派出机构报告下列哪些事项?()
最新回复
(
0
)