首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型 f(x1,x2,x3)=XTAX, 矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换; (2)求出此二次型; (3)若β=[4,一1,0]T,求Anβ.
已知三元二次型 f(x1,x2,x3)=XTAX, 矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换; (2)求出此二次型; (3)若β=[4,一1,0]T,求Anβ.
admin
2016-01-25
105
问题
已知三元二次型
f(x
1
,x
2
,x
3
)=X
T
AX,
矩阵A的对角元素之和为3,且AB+B=0,其中
(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;
(2)求出此二次型;
(3)若β=[4,一1,0]
T
,求A
n
β.
选项
答案
(1)令β=[α
1
,α
2
,α
3
],α
i
为B的列向量,显然α
1
,α
2
线性无关,α
3
=α
1
+α
2
,因而 r(B)=2,由AB=-B得到 A[α
1
,α
2
,α
3
]=一[α
1
,α
2
,α
3
], 即 Aα
1
=一α
1
,Aα
2
=-α
2
,Aα
3
=-α
3
因α
1
,α
2
线性无关,故属于特征值一1的有两个线性无关的特征向量,所以λ
1
=λ
2
=一1为二重特征值.又因A的主对角线上的元素之和为λ
1
+λ
2
+λ
3
=3,故另一特征值为λ
3
=5. 设属于λ
3
=5的特征向量为α=[x
1
,x
2
,x
3
]
T
,则 αα
1
T
=0,αα
2
T
=0 解 [*] 因 [*] 故 α=[1,1,1]
T
对α
1
,α
2
进行施密特正交化得到 [*] 再将β
1
,β
2
,β
3
单位化,得到 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵,且经正交变换X=QY后,二次型的标准形为 [*] (2)由 Q
-1
AQ=Q
T
AQ=[*] 得到 [*] 故 f=A
T
AX=[*]+4x
1
x
2
+4x
2
x
3
+4x
1
x
3
. (3)设 β=k
1
α
1
+k
2
α
2
+k
3
α
3
解得 k
1
=3,k
2
=-2,k
3
=1. 因此 β=3α
1
-2α
2
+α,而Aα
1
=-α
1
,Aα
2
=-α
2
,Aα=5α 故 A
n
β=A
n
(3α
1
-2α
2
+α)=3A
n
α
1
-2A
n
α
2
+A
n
α =3(-1)
n
α
1
-2(-1)
n
α
2
+5
n
α [*]
解析
先由AB=-B,B=[α
1
,α
2
,α
3
]得到Aα
i
=-α
i
(i=1,2,3),从而求出A的部分特征值及其特征向量.再由主对角元素之和为3即可求出A的全部特征值.再由特征向量正交,求出其余的特征向量,再正交单位化,即可得到正交变换矩阵Q,从而可求出A,将β写成特征向量的线性组合即可求出A
n
β
转载请注明原文地址:https://kaotiyun.com/show/1KU4777K
0
考研数学三
相关试题推荐
结合材料回答问题:“奉献”二字,历来为人所尊崇,在时间长河中历久弥新。奋进道路上,越是面临艰巨任务、严峻挑战,越需要无私奉献,越呼唤奉献精神。新冠肺炎疫情防控期间,84岁的钟南山院士无惧病魔、挺身而出,“95后”女医生4天3夜骑行300
党的十八大以来,以习近平同志为核心的党中央从关系党和国家前途命运的战略全局出发,从前所未有的高度谋划法治,以前所未有的广度和深度践行法治,开辟出全面依法治国理论和实践的新境界。全面依法治国是
第二次世界大战后,国家干预深入资本主义的生产、流通、分配和消费的各个环节,国家垄断资本主义作为一种新的垄断资本主义生产关系体系最终得以确立。资本主义国家运用经济手段,对社会总供给和总需求进行调节,以实现
列宁深刻分析了19世纪末20世纪初世界历史条件的变化,提出了社会主义革命可能在一国或数国首先取得胜利的论断。列宁提出这一论断的依据是
新时代的经济体制改革,不只为了应对挑战,更是为了把握机遇;不只为了短期目标,更是为了放眼长远。站在“两个一百年”的历史交汇点上,唯有将经济体制改革不断向纵深推进,努力在重要领域和关键环节上取得新突破,才能为全面深化改革创造条件、提供动力;唯有加快完善社会主
民族区域自治制度是我国的一项基本政治制度。民族区域自治制度符合我国国情,其作用有()。
认识的发展过程,首先是由实践到认识,即从实践中产生感性认识,然后能动地发展到理性认识。这是认识过程中的第一次飞跃。感性认识和理性认识的区别是()。
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
求过点P(1,2,1)及直线和平面Ⅱ:x+2y-z+4=0的交点Q的直线方程.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
随机试题
下列各项中,属于有效民事行为的有()。
子痫前期不主张应用扩容剂,仅用于伴严重低蛋白血症、贫血时。()
葡萄球菌脑膜炎区别于链球菌脑膜炎的有意义特点是
《中华人民共和国票据法》所指的票据不包括( )。
契约型基金投资者的权利主要体现在( )。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
清政府的“预备立宪”之所以是一场骗局,主要是因为()。
结构化分析方法是一种面向()的需求分析方法。
SQL语言的更新命令的关键词是
选词填空。A准时B坚持C自信D害羞E符合F道歉例如:她每天都(B)走路上下班,所以身体一直很不错。他从小就很(),一和女生说话脸就红。
最新回复
(
0
)