首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A与B相似,其中A=.求a,b的值及矩阵P,使P-1AP=B.
已知矩阵A与B相似,其中A=.求a,b的值及矩阵P,使P-1AP=B.
admin
2016-10-20
96
问题
已知矩阵A与B相似,其中A=
.求a,b的值及矩阵P,使P
-1
AP=B.
选项
答案
由A~B,知[*]a=7,b=-2. 从矩阵A的特征多项式|λE-A|=[*]=λ
2
-4λ-5,得到A的特征值是λ
1
=5,λ
2
=-1.它亦是B的特征值. 解齐次线性方程组(5E-A)x=0,(-E-A)x=0可得到矩阵A的属于λ
1
=5,λ
2
=-1的特征向量α
1
=(1,1)
T
与α
2
=(-2,1)
T
. 解齐次线性方程组(5E-B)x=0,(-E-B)x=0得到B的特征向量分别是β
1
=(-7,1)
T
,β
2
=(-1,1)
T
. 那么,令P
1
=[*] 即P
2
P
1
-1
AP
1
P
2
-1
=B.可见,取P=P
1
P
2
-1
=[*],就有P
-1
AP=B.
解析
由|A|=λ
1
λ
2
=-5<0,知A~A,因而可求可逆矩阵P
1
和P
2
,使P
1
-1
AP
1
=P
2
-1
BP
2
=A,那么P=P
1
P
2
-1
.
转载请注明原文地址:https://kaotiyun.com/show/1MT4777K
0
考研数学三
相关试题推荐
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设A是n×m矩阵,B是m×n矩阵,其中n
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
A是n阶矩阵,且A3=0,则().
随机试题
为推动新形势下的就业,党的十八大报告提出,要贯彻()的方针。
在可行性分析的过程中,需要准备多个可选方案并进行评估和比较的阶段是____________。
中国共产党把“三步走”的战略的第三步具体化,提出三个阶段目标的会议是中共
下列行为中属于侵犯肖像权的是()。
乳腺癌最常发生的部位是
选择项目经理时,首先应注重的是其能力方面的表现情况,需考虑的因素有()。
下列试验项目中,橡塑四芯电力电缆可不试验的项目是()。
某企业2006年销售收入10亿元人民币,销售净利率为14%,2006年初所有者权益为39亿元人民币,2006年末所有者权益为45亿元人民币,则该企业2006年净资产收益率为()。
[2012年·吉林·单选]“孟母三迁”说明在人的发展中发挥重要作用的因素是()。
A、10/9B、11/9C、7/9D、5/7B将b=3,a=2代入即可。
最新回复
(
0
)