首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性齐次方程组(2E—A)x=0有通解x=kξ1=k(-1,1,1)T,其中k是任意常数,A是二次型f(x1,x2,x3)=xTAx的对应矩阵,且r(A)=1. (Ⅰ)问η1=(1,1,0)T,η=(1,一1,0)T是否是方程组Ax=0的解向量,
设线性齐次方程组(2E—A)x=0有通解x=kξ1=k(-1,1,1)T,其中k是任意常数,A是二次型f(x1,x2,x3)=xTAx的对应矩阵,且r(A)=1. (Ⅰ)问η1=(1,1,0)T,η=(1,一1,0)T是否是方程组Ax=0的解向量,
admin
2016-05-03
66
问题
设线性齐次方程组(2E—A)x=0有通解x=kξ
1
=k(-1,1,1)
T
,其中k是任意常数,A是二次型f(x
1
,x
2
,x
3
)=x
T
Ax的对应矩阵,且r(A)=1.
(Ⅰ)问η
1
=(1,1,0)
T
,η=(1,一1,0)
T
是否是方程组Ax=0的解向量,说明理由;
(Ⅱ)求二次型f(x
1
,x
2
,x
3
).
选项
答案
(Ⅰ)A是二次型的对应矩阵,故A
T
=A,由(2E一A)x=0有通解x=kξ
1
=k(一1,1,1)
T
,知A有特征值λ=2,且A的对应于λ=2的特征向量为ξ
1
=(一1,1,1)
T
.r(A)=1,故知λ=0是A的二重特征值. Ax=0的非零解向量即是A的对应于λ=0的特征向量,其应与对应于λ=2的特征向量ξ
1
正交,因ξ
1
η
1
=(一1,1,1)[*]=0,故η
1
是Ax=0的解向量,即是A的对应于λ=0的特征向量. 又ξ
2
η
2
=(一1,1,1)[*]=一2≠0,故η
2
不是Ax=0的解向量. (Ⅱ)求二次型即求其对应矩阵. 求对应λ=0的线性无关特征向量.设为ξ=(x
1
,x
2
,x
3
)
T
,由ξ
1
ξ=一x
1
+x
2
+x
3
=0,解得ξ
2
=η
1
=(1,1,0)
T
,ξ
3
=(1,0,1)
T
(ξ
2
,ξ
3
线性无关),则得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1hT4777K
0
考研数学三
相关试题推荐
从全面建成小康社会到基本实现现代化,再到全面建成社会主义现代化强国,是新时代中国特色社会主义发展的战略安排。在这一战略安排中,中国跻身创新型国家前列是在()。
中国共产党是在特定的社会历史条件下成立的。中国共产党成立时呈现的主要特点是()。
在认识活动中,实践起了决定性的作用,但无论是实践活动还是认识活动,都是人的有意识的活动,在这些活动中,人的理智、情感和意志是融合在一起的。认识过程主要是理性思维的过程,同时又包含非理性因素的参与。在认识活动中,非理性因素()。
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.
求下列复合函数的一阶偏导数(f是C(1)类函数):
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
求:微分方程y〞+y=-2x的通解.
题设所给变上限定积分中含有参数x,因此令u=2x-t,则du=-dt,[*]
随机试题
开合螺母与镶条要调整适当,否则会影响螺纹的加工精度。()
A.急性胰腺炎B.肠系膜血栓形成C.胆道蛔虫症D.急性胃肠炎E.急性心肌梗死女性,45岁。突发右上腹部钻顶样疼痛,超声示胆囊腔内可见蠕动条状物。最可能的诊断是
CT计算机的核心部件是
若方程Y=a+bX中的截距a<0,说明
患者,女,32岁,已婚。患痛经2年,每于行经第1~2天,小腹冷痛,喜热,拒按,经量少,色黯,有块,舌苔白腻,脉沉紧。其证候是
王某今年22岁,在一家公司打工,因为交通肇事而被推上了法院的刑事被告席。王某打算委托一人作为自己的辩护人,在他提出的下列人选中,人民法院可以准许的是下列哪项?
以下关于对计算机系统进行新硬件安装的正确描述有()。
下列属于存款合同的内容是()。
已知某城市商品住宅平均销售价格2006年、2007年、2008年连续三年环比增长速度分别为1%、6%、9%,这三年该城市商品住宅平均销售价格的定基增长速度为()。
[*]由于lncosx=ln[1+(cosx-1)],而ln[1+(cosx-1)]~cosx-1(x→0),所以
最新回复
(
0
)