首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x,y)在(2,一2)处可微,满足 f(sin(xy)+2cosx,xy一2cosy)=1+x2+y2+o(x2+y2), 这里o(x2+y2)表示比x2+y2高阶的无穷小(x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,一2
设函数f(x,y)在(2,一2)处可微,满足 f(sin(xy)+2cosx,xy一2cosy)=1+x2+y2+o(x2+y2), 这里o(x2+y2)表示比x2+y2高阶的无穷小(x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,一2
admin
2017-12-18
57
问题
设函数f(x,y)在(2,一2)处可微,满足
f(sin(xy)+2cosx,xy一2cosy)=1+x
2
+y
2
+o(x
2
+y
2
),
这里o(x
2
+y
2
)表示比x
2
+y
2
高阶的无穷小(x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,一2,f(2,一2))处的切平面.
选项
答案
因为f(x,y)在(2,一2)处可微,所以f(x,y)在(2,一2)处连续, 取(x,y)=(0,0)得f(2,一2)=1, 因为f(x,y)在(2,一2)处可微,所以f(x,y)在(2,一2)处可偏导. 令y=0得f(2cosx,一2)=1+x
2
+o(x
2
), [*] 令x=0得f(2,-2cosy)=1+y
2
+o(y
2
), [*] 故曲面∑:z=f(z,y)在点(2,一2,1)处的法向量为n={1,一1,1},t切平面方程为π:(x一2)一(y+2)+(z一1)=0,即π:x一y+z—5=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/1rr4777K
0
考研数学一
相关试题推荐
设矩阵若A有一个特征值为3,求a;
设A为n阶非零矩阵,且A2=A,r(A)=r.求|5E+A|.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
将函数展开成x的幂级数.
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为__________.
方程组的通解是__________.
设u=u(x,y,z)具有二阶连续的偏导数,且满足=x2+y2+z2,又设S为曲面:x2+y2+z2=2az(a>0),取外侧,则
设由e-y+x(y一x)=1+x确定y=y(x),则y”(0)=______.
随机试题
下列关于玻璃管液位计的说法,错误的是()。
将检查测量合格的铅模,用管钳连接在下井的第一根油管底部,下油管()根后,装上自封封井器。
赵某去饭店就餐之时,在饭店正好碰到自己的弟弟遭一个流氓毒打,赵某立刻前去制止却反遭流氓的进攻,赵某无奈被迫自卫还击。正在这时,便衣民警钱某正好经过现场,未及表明自己的身份即迅速抓住赵某以制止其殴打。赵某以为钱某是流氓的同伙,随即抄起身边的椅子将钱某砸成重伤
如果注册会计师识别出超出正常经营过程的重大关联方交易导致的舞弊风险,下列程序中,通常能够有效应对该风险的是()。
己知某家庭向银行存款额为5000元,年利率为12%,按月计息,期限为1年,则1年后的本利和为()元。
《义务教育语文课程标准(2011年版)》对于第四学段(7~9年级)的学生识字与写字提出了明确的要求,下面正确的一项是()。
Whycan’tyoustopyour(eternal)complaining?
Weneedtofindoutwhathisplansareandact______.
【T1】我希望这个新学年成为对我的学生们有益的一年。(want…tobe)他们会在新学年学习很多东西,包括微积分、莎士比亚和失败。没错,就是失败。根据多种流传的说法,梭罗是个失败者。这位哈佛毕业生似乎把自己的大部分时间都用来在瓦尔登湖畔家
Althoughtherearebodylanguagesthatcancrossculturalboundaries,cultureisstillasignificantfactorinallbodylanguage
最新回复
(
0
)