首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αn-1是n-1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
设向量α1,α2,…,αn-1是n-1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
admin
2019-01-26
32
问题
设向量α
1
,α
2
,…,α
n-1
是n-1个线性无关的n维列向量,ξ
1
,ξ
2
是与α
1
,α
2
,…,α
n-1
均正交的n维非零列向量。证明:
ξ
1
,ξ
2
线性相关;
选项
答案
令A=(α
1
,α
2
,…,α
n-1
)
T
,则A是(n-1)×n矩阵,且r(A)=n-1。由已知条件可知 α
i
T
ξ
j
=o(i=1,2,…,n-1;j=1,2), 即Aξ
j
=0(j=1,2),这说明ξ
1
,ξ
2
是齐次线性方程组Ax=0的两个解向量。但Ax=0的基础解系中所含向量的个数为n-r(A)=1,所以解向量ξ
1
,ξ
2
线性相关。
解析
转载请注明原文地址:https://kaotiyun.com/show/1wj4777K
0
考研数学二
相关试题推荐
函数f(x)=xsinx()
已知n(n≥3)阶实矩阵A=(aij)n×n满足条件:(1)aij=Aij(i,j=1,2,…,n),其中Aij是aij的代数余子式;(2)a11≠0.求|A|.
用导数定义证明:可导的偶函数的导函数是奇函数,而可导的奇函数的导函数是偶函数.
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
设在区[e,e2]上,数p,q满足条件px+q≥lnx求使得积分I(p,q)=(px+q—lnx)dx取得最小值的p,q的值.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dtG(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
随机试题
中国第一部系统的文学理论著作是()
碘量法测定注射用苄星青霉素含量溴酸钾法测定异烟肼的含量
具有下列哪些情形之一的,走私、贩卖、运输、制造毒品犯罪,处15年有期徒刑、无期徒刑或死刑并处没收财产?
下列物质中,不污染空气的是()。
项目可行性研究的内容可概括为( )。
在分部分项工程成本分析中,“三算”指的是(),通过“三算”为今后的分部分项工程成本寻求节约途径。
电子邮件地址格式为:username@hotmail.com,其中hotmail为( )。
2,5,9,19,37,75,()
Oneofthebasiccharacteristicsofcapitalismistheprivateownershipofthemajormeansofproduction—capital.Theownershi
CriticsandsupportersoftheUnitedNationshavesometimesseenworldsapart.Butsincelastyear,almostallofthem,whether
最新回复
(
0
)