首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求: (1)E(U),E(V),D(U),D(V),ρUV; (2)设U,V不相关,求常数a,b之间的关系.
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求: (1)E(U),E(V),D(U),D(V),ρUV; (2)设U,V不相关,求常数a,b之间的关系.
admin
2019-08-23
11
问题
设随机变量X,Y独立同分布,且X~N(0,σ
2
),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求:
(1)E(U),E(V),D(U),D(V),ρ
UV
;
(2)设U,V不相关,求常数a,b之间的关系.
选项
答案
(1)E(U)=E(aX+bY)=0,E(V)=E(aX—bY)=0, D(U)=D(V)=(a
2
+b
2
)σ
2
. Cov(U,V)=Cov(aX+bY,aX—bY)=a
2
D(X)一b
2
D(Y)=(a
2
-b
2
)σ
2
, [*] (2)U,V不相关[*]ρ
UV
=0[*]|a|=|b|.
解析
转载请注明原文地址:https://kaotiyun.com/show/1zS4777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的概率密度为f(x,y)=Ae—2x2+2xy—y2,—∞<x<+∞,—∞<y<+∞,求常数A及条件概率密度fY|X(y|x)。
设随机变量X1与X2相互独立,其分布函数分别为则X1+X2的分布函数F(x)=()
设f(x)=则f{f[f(x)]}等于()
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设总体X~N(μ,σ2),从X中抽得容量为16的简单样本,S2为样本方差,则D(S2)=_______.
设随机变量X,Y相互独立,D(X)=4D(Y),令U=3X+2Y,V=3X一2Y,则ρUV=___________.
设事件A发生的概率是事件B发生概率的3倍,A与B都不发生的概率是A与B同时发生概率的2倍,若P(B)=2/9,则P(A-B)=_______.
设平面区域D由曲线y=及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_________。
已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40cm,则μ的置信度为0.95的置信区间是________。(Φ(1.96)=0.975,Φ(1.645)=0.95)
设一设备在时间长度为t的时间内发生故障的次数N(t)~P(λt).(1)求相继两次故障之间时间间隔T的概率分布;(2)求设备在无故障工作8小时下,再无故障工作8小时的概率.
随机试题
A.细动脉壁玻璃样变性B.细动脉壁纤维素样坏死C.小动脉内膜纤维化D.小血管内纤维素样血栓形成(2010年第138题)慢性排斥反应的基本病变是
患儿,11个月。腹腔感染后形成肠瘘,在治疗过程中为增加机体营养,提高抵抗力,使胃肠道休息,采用哪项最为适宜
提出“止血、消瘀、宁血、补血”治血四法的医著是()
法院受理甲出版社、乙报社著作权纠纷案,判决乙赔偿甲10万元,并登报赔礼道歉。判决生效后,乙交付10万元,但未按期赔礼道歉,甲申请强制执行。执行中,甲、乙自行达成口头协议,约定乙免于赔礼道歉,但另付甲1万元。关于法院的做法,下列哪一选项是正确的?(2010年
某项目厂区占地面积为60000m2,其中,构筑物占地面积3600m2,道路和广场占地面积22800m2,建筑物占地面积12000m2,绿化面积18000m2,露天堆场面积3600m2,经计算,该项目的建筑系数为()。
下列有关重大错报风险的说法中,错误的是()。(2019年)
以下关于主刑制度的理解,正确的是()。
甲表示将赠与乙一台佳能相机,乙欣然表示接受。几日后,甲告诉乙,他不想将相机赠给乙,因为该相机已经赠给丙。则()。
在网络协议的各层中相邻层之间的联系是【 】的关系。
叙述中错误的是()。
最新回复
(
0
)