首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(Ⅰ) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ)的通解.
设齐次方程组(Ⅰ) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ)的通解.
admin
2018-11-23
67
问题
设齐次方程组(Ⅰ)
有一个基础解系β
1
=(b
11
,b
12
,…,b
1×2n
)
T
,β=(b
21
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(Ⅰ)和(Ⅱ)的系数矩阵. (Ⅰ)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(Ⅰ)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0, i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n-r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为 c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/29M4777K
0
考研数学一
相关试题推荐
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
微分方程xy’+2y=sinx满足条件y(π)=的通解为________。
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=________,P(B)=__
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
设A*为A的伴随矩阵,矩阵B满足A*B=A-1+2B,求B.
设问当k为何值时,存在可逆矩阵P,使得P-1AP=D为对角矩阵?并求出P和相应的对角矩阵D.
设α1,…,αn-1,β1,β2均为n维实向量,α1,…,αn-1线性无关,且βj(j=1,2)与α1.….αn-1均正交.证明:β1与β2线性相关.
设A,B,C是两两相互独立且三事件不能同时发生的事件,且P(A)=P(B)=P(C)=x,则使P(A∪B∪C)取最大值的x为()
设A,B,C是三个事件,与事件A互斥的事件是()
随机试题
在考生文件夹下的“sampl.accdb”数据库文件中已建立两个表对象(名为“员工表”和“部门表”)和一个窗体对象(名为“fTest”)及一个宏对象(名为“mTest”)。请按以下要求,按顺序完成对象的各种操作:设置表对象“员工表”的年龄字段有效性规则
脂肪酸β-氧化之前活化的原因是
A.微晶纤维素B.碳酸氢钠C.硬脂酸镁D.乙基纤维素E.聚乙二醇水溶性润滑剂是
基准地价评估资料调查分为()的形式。
应付账款是一种主要的商业信用形式,其特点是不必负担成本。()
我国某中学地理课外活动小组,在春分日这一天,测得该校操场上旗杆在不同时间的影长,其数据如下表已知旗杆长为17.32m,当北京时间分别为12时、13时和14时时。该活动小组观察到旗杆影子的方向应分别为()。
在我们学校图书馆里有好几千本书。
我国改革开放以来,在社会主义可以实行市场经济的理论认识上的重大突破是( )。
系统可维护性的评价指标不包括(32)。
VintonCerf,knownasthefatheroftheInternet,saidonWednesdaythattheWebwasoutgrowingtheplanetEarthandthetimeha
最新回复
(
0
)