首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年)设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵.AT是4阶矩阵A的转置矩阵. 求A.
(1998年)设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵.AT是4阶矩阵A的转置矩阵. 求A.
admin
2018-07-30
109
问题
(1998年)设(2E-C
-1
B)A
T
=C
-1
,其中E是4阶单位矩阵.A
T
是4阶矩阵A的转置矩阵.
求A.
选项
答案
给题设方程两端左乘C,得 C(2E-C
-1
B)A
T
=E 即(2C-B)A
T
=E 由于矩阵 [*] 可逆,故A
T
=(2C-B)
-1
,从而 A=[(2C-B)
-1
]
T
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/29j4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.
二元函数f(x,y)在点(x0,y0)处两个偏导数f’(x0,y0),fx’(x0,y0)存在是f(x,Y)在该点连续的
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=_______
设A为n阶矩阵,且|A|=0,则A().
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0[*]A(β1,β2,…,βn)=[*]BAT=O[*]α1T,α2T,…,αnT为BY=0的一组解,
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
随机试题
女性,孕5个月发现残角子宫妊娠活胎,有生育要求。以下处理哪项最恰当
尿道下裂行手术治疗的原则是
【背景资料】某市政供热管道工程,供回水温度为95℃/70℃,主体采用直埋敷设。管线经过公共绿地和A公司场院,A公司院内建筑密集、空间狭窄。供热管线局部需穿越道路,道路下面敷设有多种管道。项目部拟在道路两侧各设置1个工作坑.采用人工挖土顶
下列关于“短期借款”账户的表述,错误的是()。
LINUX环境中开发专业级软件通常使用JAVA语言和()数据库。
社区文化建设的功能不包括()
Shitsuke是5S管理中的()。
在丙将部分承包地转包给丁后,关于取水的权利表述正确的是()。
1956年4月25日,毛泽东在政治局扩大会议上作了《论十大关系》的报告,报告论述了我国社会主义建设中带有全局性的十个问题,其中,属于经济关系方面的问题有
快速以太网FastEthernet采用了与传统Ethernet相同的介质访问控制方法,而只是将它的每个比特发送的时间降到______ns。
最新回复
(
0
)