首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f”(η)+f’(η)=1.
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f”(η)+f’(η)=1.
admin
2022-09-22
70
问题
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1.证明:
(I)存在ξ∈(0,1),使得f’(ξ)=1;
(Ⅱ)存在η∈(-1,1),使得f”(η)+f’(η)=1.
选项
答案
(I)由于f(x)在[-1,1]上为奇函数,可知f(0)=0. 令F(x)=f(x)-x,可知F(x)在[0,1]上连续,在(0,1)上可导. 又F’(x)=f’(x)-1,F(1)=f(1)-1=0,F(0)=f(0)-0=0, 由罗尔定理可知,存在ξ∈(0,1),使得F’(ξ)=0,即f’(ξ)=1. (Ⅱ)利用逆推法求证.考虑到 f”(x)+f’(x)=1[*]e
x
[f”(x)+f’(x)]=e
x
[*][e
x
f’(x)]’=e
x
[*][e
x
f’(x)-e
x
]’=0. 不妨设g(x)=e
x
f’(x)-e
x
,则g’(x)=e
x
f’(x)+e
x
f”(x)-e
x
. 由于f(x)是奇函数,所以f’(x)是偶函数.由(I)的结论知f’(ξ)=f’(-ξ)=1. 因此g(ξ)=g(-ξ)=0.由罗尔定理可知,存在η∈(-ξ,ξ)[*](-1,1),使得 g’(η)=0. 从而可得 f”(η)+f’(η)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Df4777K
0
考研数学二
相关试题推荐
设5χ12+χ22+tχ32+4χ1χ2-2χ1χ3-2χ2χ3为正定二次型,则t的取值范围是_______.
=_______.
设线性方程组有解,则方程组右端
设A=(α1,α2,α3)为三阶矩阵,且|A|=3,则|α1+2α2,α2-3α3,α3+2α1|=_______.
设z=xg(x+y)+yφ(xy),其中g,φ具有二阶连续导数,则=_________。
曲线y=x4(x≥0)与x轴围成的区域面积为_______.
设总体X服从正态分布N(μ,8),其中μ未知.(1)现有来自总体X的10个观测值,已知=1500,求μ的置信水平为0.95的置信区间;(2)当置信水平为0.95时,欲使置信区间的长度小于1,则样本容量n至少为多少?(3)当样本容量n=100时,区间
求极限:
已知实矩阵A=(aij)3×3满足条件:(1)aij=Aij(i,j=1,2,3),其中Aij是aij的代数余子式;(2)a11≠0.计算行列式|A|.
设二次型f=xTAx=ax12+2x22一x32+8x1x2+2bx1x3+2cx2x3,矩阵A满足AB=O.其中B=判断矩阵A与B是否合同.
随机试题
弥漫性甲状腺肿大疾病施行甲状腺大部切除术应掌握严格适应证,下列哪一项不适宜手术
A.花蕾B.花粉C.花D.柱头E.雄蕊西红花的容易入药部位是()。
逆作法的优点是减小对周围环境的影响,地上、地下同时施工,工期短和()。
商业银行向借款人提供的并按约定的利率和期限还本付息的货币资金称为()。
有A、B、C、D外表一样、重量不同的四个小球。已知:A+B=C+D;A+D>B+C:A+C
甲以出卖为目的,将独自玩耍的4岁孩子乙骗到自己家中,后因找不到买主又主动将乙送回到原地方。甲的行为()。
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为180分钟。其中,阅读给定资料参考时限为50分钟,作答参考时限为130分钟。满分150分。2.监考人员宣布考试开始时,你才可以开始答题。3.请在题本、答题卡指定位置填
Onanaverageofsixtimesaday,adoctorinHollandpractices"active"euthanasia(安乐死):intentionallyadministeringalethal(致
HereIwanttotrytogiveyouananswertothequestion;Whatpersonalqualitiesaredesirableinateacher?Probablynotw
控制器的主要功能是______。
最新回复
(
0
)