首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f”(η)+f’(η)=1.
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f”(η)+f’(η)=1.
admin
2022-09-22
63
问题
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1.证明:
(I)存在ξ∈(0,1),使得f’(ξ)=1;
(Ⅱ)存在η∈(-1,1),使得f”(η)+f’(η)=1.
选项
答案
(I)由于f(x)在[-1,1]上为奇函数,可知f(0)=0. 令F(x)=f(x)-x,可知F(x)在[0,1]上连续,在(0,1)上可导. 又F’(x)=f’(x)-1,F(1)=f(1)-1=0,F(0)=f(0)-0=0, 由罗尔定理可知,存在ξ∈(0,1),使得F’(ξ)=0,即f’(ξ)=1. (Ⅱ)利用逆推法求证.考虑到 f”(x)+f’(x)=1[*]e
x
[f”(x)+f’(x)]=e
x
[*][e
x
f’(x)]’=e
x
[*][e
x
f’(x)-e
x
]’=0. 不妨设g(x)=e
x
f’(x)-e
x
,则g’(x)=e
x
f’(x)+e
x
f”(x)-e
x
. 由于f(x)是奇函数,所以f’(x)是偶函数.由(I)的结论知f’(ξ)=f’(-ξ)=1. 因此g(ξ)=g(-ξ)=0.由罗尔定理可知,存在η∈(-ξ,ξ)[*](-1,1),使得 g’(η)=0. 从而可得 f”(η)+f’(η)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Df4777K
0
考研数学二
相关试题推荐
设y=y(x)是由=________。
微分方程xy’+2y=sinx满足条件的特解为____________.
已知A=,A*是A的伴随矩阵,那么A*的特征值是_________。
曲线的斜渐近线方程为__________。
设两曲线y=x2+ax+b与-2y=-1+xy3在点(-1,1)处相切,则a=_______,b=______.
已知一2是A=的特征值,其中b≠0是任意常数,则x=____________.
已知a1=[1,3,5,一1]T,a2=[2,7,a,4]T,a3=[5,17,一1,7]T.(Ⅰ)若a1,a2,a3线性相关,求a的值;(Ⅱ)当a=3时,求与a1,a2,a3都正交的非零向量a4;
设总体X服从正态分布N(μ,8),其中μ未知.(1)现有来自总体X的10个观测值,已知=1500,求μ的置信水平为0.95的置信区间;(2)当置信水平为0.95时,欲使置信区间的长度小于1,则样本容量n至少为多少?(3)当样本容量n=100时,区间
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关;(2)设A,B为n阶方阵,B≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分别是
(88年)若函数y=f(x),有f’(x0)=则当△x→0时,该函数在x=x0处的微分dy是
随机试题
下列不属于消防水泵接合器的组成构件的是()。
A.盐析固化法B.逆相蒸发法C.单凝聚法D.熔融法E.饱和水溶液法
某工程双代号时标网络计划执行到第5周和第11周时,检查其实际进度如下图前锋线所示,由图可以得出的正确结论有()。
李某发现近段时间期货交易行情很好,于是找到其在某期货公司(非国有)工作的朋友王某,给其5万元钱的“劳务费”,让他帮忙寻找点“有用信息”,王某利用其职务上的便利,多次非法向李某提供内幕信息,李某从中获利10万余元。另外,据调查,王某还曾经于2007年5月份帮
下列关于基金当事人地位与责任的说法,不正确的是()。(2009年上半年)
下列选项中属于行政层级式非个人因素的描述的是( )。
自2014年年初以来,A公司出现不能清偿到期债务,且资产不足清偿全部债务的情况,2015年1月1日,人民法院经审查裁定受理了A公司的破产清算申请,并指定了管理人。在该破产案件中,存在下述情况:(1)2013年8月,A公司将自己一辆市场价格为100万元的小
影响物业价格的心理因素主要有()。
不在教师资格认定程序之列的是【】
耦合性和内聚性是对模块独立性度量的两个标准。下列叙述中正确的是
最新回复
(
0
)