首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知 a1=[1,3,5,一1]T, a2=[2,7,a,4]T, a3=[5,17,一1,7]T. (Ⅰ)若a1,a2,a3线性相关,求a的值; (Ⅱ)当a=3时,求与a1,a2,a3都正交的非零向量a4;
已知 a1=[1,3,5,一1]T, a2=[2,7,a,4]T, a3=[5,17,一1,7]T. (Ⅰ)若a1,a2,a3线性相关,求a的值; (Ⅱ)当a=3时,求与a1,a2,a3都正交的非零向量a4;
admin
2020-03-15
44
问题
已知
a
1
=[1,3,5,一1]
T
, a
2
=[2,7,a,4]
T
, a
3
=[5,17,一1,7]
T
.
(Ⅰ)若a
1
,a
2
,a
3
线性相关,求a的值;
(Ⅱ)当a=3时,求与a
1
,a
2
,a
3
都正交的非零向量a
4
;
(Ⅲ)当a=3时,证明a
1
,a
2
,a
3
,a
4
可表示任一个四维列向量.
选项
答案
(Ⅰ)利用向量组线性相关、线性无关的定义求之; (Ⅱ)按齐次线性方程组求解的方法求之. (Ⅲ)归结证明对任意四维向量α,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α总有解. 解 (Ⅰ)由α
1
,α
2
,α
3
线性相关,得秩(α
1
,α
2
,α
3
)<3.由于 [*] 所以a=一3. (Ⅱ)设α
4
=[x
1
,x
2
,x
3
,x
4
]
T
,则有 <α
1
,α
4
>=0, <α
2
,α
4
>=0, <α
3
,α
4
>=0, 即 [*] 而 [*] 所以 X=[x
1
,x
2
,x
3
,x
4
]
T
=α
4
=k[19,一6,0,1], 其中k≠0为任意常数. (Ⅲ)由于[*] 所以x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α恒有解,即任一四维列向量必可由α
1
,α
2
,α
3
,α
4
线性表出. 或由(Ⅰ)知α=3时,α
1
,α
2
,α
3
必线性无关,那么如果 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0, 用α
4
T
左乘上式两端并利用 α
4
T
α
1
=α
4
T
α
2
=α
4
T
α
3
=0, 有k
4
α
4
T
α
4
=0,故必有k
4
=0.于是 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, 从而α
1
,α
2
,α
3
,α
4
必线性无关.而5个四维向量必线性相关,因此任一个四维列向量都可由α
1
,α
2
,α
3
,α
4
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/XpA4777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。求方程f(x1,x2,x3)=0的解。
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,—2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=________。
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=若α0=,
[2009年]求极限
[2008年]求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
设非负函数y=y(x)(x≥0)满足微分方程xy"一y’+=0.当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且yTx=2,求A的特征值、特征向量.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
设(x-3sin3x+ax-2+b)=0,求a,b.
随机试题
抢救心脏骤停患者而进行胸外心脏按压时,术者按压的部位应置于患者的()。
论述国际区域市场存在的原因。
Χ线机的高压整流方式不包括
亚马逊是一家著名的跨国公司,为开拓中国市场,拟在我国北京、上海、广州等大城市设立分支机构。根据公司法有关规定,以下说法中正确的是:
甲拟通过电子渠道申请开立两个个人银行存款账户,根据规定,下列选项中,甲可以成功开立的是()。
【2012-37】场依存认知风格者偏好的学习方式是()。
Youalreadyhaveadatewithyourfriendbutsuddenlyhaveanotherthingtodoandyouhavetotellyourfriendthatyoucan’tg
Alan"Ace"GreenbergchosehisnicknametoimprovehischanceswithgirlsattheUniversityofMissouri.Butitisanapt(1)___
Underthedifficultfinancialsituation,Americans______.
A、Theywantedtofollowhisexample.B、Theyfullysupportedhisundertaking.C、Theywerepuzzledbyhisdecision.D、Theywereaf
最新回复
(
0
)