首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维列向量且α1≠0,Aα1=kα1,Aα2=α1+kα2,Aα3=α2十kα3,则( )
设A是3阶矩阵,α1,α2,α3是3维列向量且α1≠0,Aα1=kα1,Aα2=α1+kα2,Aα3=α2十kα3,则( )
admin
2022-04-27
69
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维列向量且α
1
≠0,Aα
1
=kα
1
,Aα
2
=α
1
+kα
2
,Aα
3
=α
2
十kα
3
,则( )
选项
A、α
1
,α
2
,α
3
线性相关.
B、α
1
,α
2
,α
3
线性无关.
C、Aα
1
,Aα
2
,Aα
3
线性相关.
D、Aα
1
,Aα
2
,Aα
3
线性无关.
答案
B
解析
设
k
1
α
1
+k
2
α
2
+k
3
α
3
=0, ①
①式两边同时左乘(A-kE),得
k
1
(A-kE)α
1
+k
2
(A-kE)α
2
+k
3
(A-kE)α
3
=0,
即
k
2
α
1
+k
3
α
2
=0. ②
②式两边同时再左乘(A-kE),得k
3
α
1
=0.由α
1
≠0,得k
3
=0.代入②式和①式,可
得k
2
=k
1
=0,故α
1
,α
2
,α
3
线性无关.
由
A(α
1
,α
2
,α
3
)=(kα
1
,α
1
+kα
2
,α
2
+kα
3
)
=(α
1
,α
2
,α
3
)
且
=k
3
,可知当k≠0时,Aα
1
,Aα
2
,Aα
3
线性无关;当k=0时,Aα
1
,Aα
2
,Aα
3
线性相关.故B正确.
转载请注明原文地址:https://kaotiyun.com/show/2GR4777K
0
考研数学三
相关试题推荐
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:亏损的概率α;
设f(x),g(x)均为[0,T]上的连续可微函数,且f(0)=0,证明:(Ⅰ)∫0Tf(x)g(x)dx=∫0Tf’(t)[∫tTg(x)dx]dx;(Ⅱ)∫0Tf(c)dt=∫0Tf’(t)(T一t)dt.
微分方程y"+y’=x2的特解形式为________.
在函数f(x)=中,x3的系数是__________.
设A为m×s矩阵,B为s×n矩阵,要使ABx=0与Bx=0为同解方程组的充分条件是().
求微分方程y"+y'-2y=xex+sin2x的通解.
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)—g(b)=0.g(x)≠0.任意x∈(a,b);
设,若f(x)在x=0处的二阶导数存在,则a=__________.
对于任意二事件A,B,0<P(A)<1,0<P(B)<1,定义A与B的相关系数为证明事件A,B相互独立的充分必要条件是其相关系数为零;
随机试题
新闻领导体制中社长制的优点是()
幂级数nxn的收敛半径R=__________.
此时最主要的护理诊断是当病人出现窒息时的处理不妥的是
应放在有色密盖瓶内的药物是
男,50岁。左下牙龈癌,行龈颌颈联合根治术并放置负压引流,其引流去除的最佳时机为24小时引流量不超过()
A.脾虚证B.肾阳虚证C.阴虚夹湿证D.湿热下注证E.热毒蕴结证带下量多,色黄呈脓性,质稠,有臭气,其证型为
中国公民甲与外国公民乙因合同纠纷诉至某市中级法院,法院判决乙败诉。判决生效后,甲欲请求乙所在国家的法院承认和执行该判决。关于甲可以利用的途径,下列哪些说法是正确的?(卷三2009年真题试卷第90题)
以少数学生为对象,在较短时间内进行课程教学,并把教学过程摄制成录像,课后再进行分析的教师训练方法称为()。
(2018年临沂)根据心理活动的倾向,瑞士心理学家荣格将性格分为内向趔和外向型,但多数人并非典型的内向型或外向型性格,而是介于二者之间的中间型c,
Itcanbeseenfromthepassagethat______.Theidealtitleforthispassageis______.
最新回复
(
0
)