设f(x),g(x)均为[0,T]上的连续可微函数,且f(0)=0,证明: (Ⅰ)∫0Tf(x)g(x)dx=∫0Tf’(t)[∫tTg(x)dx]dx; (Ⅱ)∫0Tf(c)dt=∫0Tf’(t)(T一t)dt.

admin2019-08-06  43

问题 设f(x),g(x)均为[0,T]上的连续可微函数,且f(0)=0,证明:
    (Ⅰ)∫0Tf(x)g(x)dx=∫0Tf’(t)[∫tTg(x)dx]dx;
    (Ⅱ)∫0Tf(c)dt=∫0Tf’(t)(T一t)dt.

选项

答案(Ⅰ)由于g(x)连续,所以∫Ttg(x)dx关于t可导,则利用凑微分及分部积分法有 ∫0Tf(x)g(x)dx=∫0Tf(x)d[∫txg(t)dt]=f(x)∫Txg(t)dt|0T一∫0T[∫Txg(t)dt]f’(x)dx. 由f(0)=0知,上述第二个等号后的第一项为零,于是 ∫0Tf(x)g(x)dx=一∫0Tf’(x)[∫Txg(t)dt]dx=∫0Tf’(t)[∫tTg(x)dx]dt. (Ⅱ)因f(0)=0,由分部积分法有 ∫0Tf(t)dt=∫0Tf(t)d(t一T)=f(t)(t一T)|0T一∫0T(t一T)f’(t)dt =∫0Tf’(t)(T—t)dt.

解析
转载请注明原文地址:https://kaotiyun.com/show/BrJ4777K
0

最新回复(0)