首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明: (1)存在η∈(1/2,1),使得f(η)=η; (2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明: (1)存在η∈(1/2,1),使得f(η)=η; (2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
admin
2022-08-19
34
问题
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明:
(1)存在η∈(1/2,1),使得f(η)=η;
(2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
选项
答案
(1)令φ(x)=f(x)-x,φ(x)在[0,1]上连续,φ(1/2)=1/2>0,φ(1)=-1<0, 由零点定理,存在η∈(1/2,1),使得φ(η)=0,即f(η)=η. (2)设F(x)=e
-kx
φ(x),显然F(x)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0, 由罗尔定理,存在ξ∈(0,η),使得F′(ξ)=0,整理得 f′(ξ)-k[f(ξ)-ξ]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/2NR4777K
0
考研数学三
相关试题推荐
求幂级数的收敛域.
将f(x)=展开成(x-2)的幂级数.
设常数k>0,则级数().
判断级数的敛散性.
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
设对一切的x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2-1),讨论函数f(x)在x=0处的可导性.
设y=,A=,求矩阵A可对角化的概率.
设总体x~F(x,θ)=,样本值为1,l,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体x的样本,S2=(Xi-)2,则D(S2)=____________.
一条生产线的产品成箱包装,每箱的重量是随机的.假设平均重50千克,标准差为5千克.如果用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保证不超载的概率大于0.977.(Φ(2)=0.977.)
随机试题
关于举办一次税收调研活动,你会从哪几个方面入手?你觉得重点在哪里?
知识灌输的主要教学方法包括
氢化可的松入血后与血浆蛋白结合率可达
女,4岁。面容特殊,眼距宽,鼻梁平,舌厚肥大,面部臃肿,皮肤粗糙,头发干稀,智力低下,身高80cm。腕部x线检查显示一枚骨化中心。最可能的诊断是()
有关国际赔偿责任的说法,下列正确的是:()
某排水工程需选用一台流量为:1000m3/h、扬程5mH2O的水泵,最合适的水泵为()。
蓄电池的主要指标包括()。
汇总记账凭证账务处理程序的主要特点是( )。
世贸组织是1995年1月1日布鲁塞尔回合谈判的成果。()
学校可以通过()加强与家庭之间的联系。
最新回复
(
0
)