首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫0xf(t)dt=1在(0,1)有且仅有一个根.
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫0xf(t)dt=1在(0,1)有且仅有一个根.
admin
2019-09-04
102
问题
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫
0
x
f(t)dt=1在(0,1)有且仅有一个根.
选项
答案
令φ(x)=2x-∫
0
x
f(t)dt-1,φ(0)=-1,φ(1)=1-∫
0
1
f(t)dt, 因为f(x)<1,所以∫
0
1
f(t)dt<1,从而φ(0)φ(1)<0, 由零点定理,存在c∈(0,1),使得φ(c)=0. 因为φ’(x)=2-f(x)>0,所以φ(x)在[0,1]上单调增加,故方程2x-∫
0
x
f(t)dt=1在(0,1)内有且仅有一个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/K7J4777K
0
考研数学三
相关试题推荐
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位矩阵.求方阵A的伴随矩阵A*的一个特征值.
设4阶行列式的第2列元素依次为2,a22,a32,3,第2列元素的余子式依次为1,一1,1,一1,第4列元素的代数余子式依次为3,1,4,2,且行列式的值为1,则()
已知∫01f(tx)dt=+1,则f(x)=_______.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
证明:n(n>3)阶非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
试证明:曲线恰有三个拐点,且位于同一条直线上.
设f(x)连续,f(0)=1,f’(0)=2.下列曲线与曲线y=f(x)必有公共切线的是()
说明下列事实的几何意义:函数f(x),g(x)在点x=x0处可导,且fx0)=g(x0),f’(x0)=g’(x0);
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
良好医患关系的重要性体现在
人生什么事最苦呢?贫吗?不是;失意吗?不是;老吗?死吗?都不是。我说人生最苦的事,莫苦于身上背着一种未来的责任。人若能知足,虽贫不苦;若能安分(不多作分外希望),虽失意不苦;老、病、死,乃人生难免之事,达观的人看得很平常,也不算什么苦。独是凡人生活在世间一
环磷酰胺的不良反应是()。
A、凡例部分B、附录部分C、沿革部分D、正文部分E、索引部分盐酸滴定液配制与标定的方法应收载药典的()
当存在巨额贸易顺差时,紧缩的货币政策能够提高利率,进而使本币升值,导致(),有助于恢复贸易平衡。
施工过程质量控制的内涵包括()。
远期利率合同()。
集成创新的主体是()。
组织
Whatdoesthewomanwantthemantodo?
最新回复
(
0
)