首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的各行元素之和为零,且A的秩为n-1,则线性方程组Ax=0的通解为________.
设n阶矩阵A的各行元素之和为零,且A的秩为n-1,则线性方程组Ax=0的通解为________.
admin
2021-07-27
65
问题
设n阶矩阵A的各行元素之和为零,且A的秩为n-1,则线性方程组Ax=0的通解为________.
选项
答案
c[1,1,…,1]
T
,其中c为任意常数
解析
由题设,系数矩阵A的秩为n-1,知方程组Ax=0的基础解系由n-(n-1)=1个非零解向量构成,又由矩阵A的各行元素之和为零,有A[1,1,…,1]
T
=[O,0,…,0]
T
,从而知ξ=[1,1…,1]T是方程组Ax=0的非零解,并构成一个基础解系,因此,方程组的通解为ξ=c[1,1,…,1]
T
,其中c为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/2Qy4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB一1。
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设常数k>0,函数在(0,+∞)内零点个数为()
已知向量组则向量组α1,α2,α3,α4,α5的一个极大无关组为()
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
求线性方程组的通解,并求满足条件x12=x22的所有解.
写出下列二次型的矩阵:
随机试题
单位商品的价值量与包含在该商品中的社会必要劳动量是()
直肠温度比口腔温度高
对固体废物的处理方法主要包括( )。
个人申请保荐代表人资格或保荐代表人变更保荐机构的通过所任职的保荐机构向()提交申请。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
图1为世界某区域示意图,表1为图1中甲、乙两城市的气候资料。据此,完成下列问题。简述“雪带”(降雪量明显多于周边地区)分布的特点,并解释原因。
演绎作品,又称派生作品,指在已有作品的基础上,经过改编、翻译、注释、整理等创造性劳动而产生的作品。改编,是指改变作品,创作出具有独创性的新作品;翻译,是指将作品从一种语言文字转换成为另一种语言文字;注释,是指对文字作品中的字、词、句进行解释;整理,是指对内
若属性A是关系R的主属性,属性A不能够为空值,这属于()。
Tobesuccessfulinajobinterview,youshould【B1】______certainandprofessional【B2】______.Youneedtocreateagood【B3】___
A、Thecitycanbealonelyplace.B、LifeintheWestcanbeverydangerous.C、PeopleintheWestarefondofanimals.D、Thedog
最新回复
(
0
)