首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵.证明:R(A*)=R(An+1)。
设A为n阶方阵.证明:R(A*)=R(An+1)。
admin
2018-01-26
64
问题
设A为n阶方阵.证明:R(A
*
)=R(A
n+1
)。
选项
答案
本题可转化为方程组A
n
x=0与A
n+1
x=0同解的证明。 若A
n
x=0,则A
n+1
x=0,因此A
n
x=0的解必为A
n+1
x=0的解; 反之,当A
n+1
x=0时,如果A
n
x≠0,设k
0
,k
1
,…,k
n
使k
0
x+k
1
Ax+…+k
n
A
n
x=0,依次用A
n
,A
n-1
,…,A乘该式,即得k
0
=k
1
=…=k
n
=0,故这n+1个向量线性无关,这显然与n+1个n维向量必线性相关矛盾,所以A
n
x=0,于是可知A
n
x=0与A
n+1
x=0同解,故R(A
n
)=R(A
n+1
)。
解析
转载请注明原文地址:https://kaotiyun.com/show/2Sr4777K
0
考研数学一
相关试题推荐
设f(x)在(一1,1)内二阶连续可导,且f"(x)≠0.证明:(1)对(一1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2)
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设f(x)=,g(x)=x3+x4,当x→0时,f(x)是g(x)的().
设随机变量U在[一2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y].
设X和Y相互独立都服从0—1分布:P{X=1)=P{Y=1)=0.6.试证明:U=X+Y,V=X—Y不相关,但是不独立.
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
设有方程y’+P(x)y=x2,其中试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
随机试题
A.血肿形成B.纤维性骨痂形成C.骨性骨痂形成D.骨痂改建或再塑骨折愈合过程中,类骨组织转变为编织骨
关于二尖瓣狭窄的叙述,错误的是
轻取即得,重按稍减的脉为
F面不属于网络安全特征的是()。
具有一定的机械强度和硬度,耐磨性好,绝缘性良好,击穿电压在10kV以上,耐热性较高,耐蚀性优良,尺寸基本稳定,但不耐强碱和酚类物质的侵蚀热固性塑料是()。
某高层民用建筑始建于1996年,1999年投入使用,建筑面积14093.78m2,地上十六层,地下一层,高度60m,属一类高层建筑,未经消防审核、验收;大楼内现有行政办公、旅馆住宿、民企公司、普通住户、网吧、商铺等多种用途用房,含商住业主20户,办公业主
某企业年初未分配利润贷方余额为200万元,本年实现净利润600万元,按净利润的10%提取法定盈余公积,向投资者分配利润80万元。该企业年末可供分配利润为()万元。
【2014年山东省属】下列法律法规中将教师视为专业人员的是()。
互联网的普及应用,拓宽了网络销售的市场空间。随着网络技术的完善与发展,不少年轻人在网上开起网店卖产品,方便了不少消费者,也取得了不错的经济效益。一些商家开通了微博进行销售,消费者一刷微博,看到各种使用心得、降价促销信息,一心动就会买一些东西,这些东西可能之
InJapan,mostpeoplestillfeelthatawoman’splaceisinthehome;andmostwomenwillinglyaccepttheir【C1】______roleaswif
最新回复
(
0
)