首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
admin
2015-08-17
72
问题
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
选项
答案
注意到[*]当B有一个t
1
阶子式不为0,A有一个t
2
阶子式不为0时,[*]一定有一个t
1
+t
2
阶子式不为O,因此[*]故r(AB)≥r(A)+r(B)-n.特别地,当AB=O时,有r(AB)=0→r(A)+r(B)≤n,
解析
转载请注明原文地址:https://kaotiyun.com/show/51w4777K
0
考研数学一
相关试题推荐
设g(x)=f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线,(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
4阶矩阵A,B满足ABA-1=BA-1+3E,已知
若x→0时(1-ax2)1/4-1与xsinx是等价无穷小量,试求常数a.
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:=n:(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
利用取对数求导法求下列函数的导数(其中,a1,a2,…,an,n为常数):
已知齐次线性方程组有非零解,且是正定矩阵.求xTx=1,xTAx的最大值和最小值.
随机试题
简述李清照词论的主要内容。
项目范围管理的重要过程包括()。
构成国际多式联运必须具备()的基本条件。
陈述性知识的表征形式是()。
A.CouldyoutellmewhatIhavetodotojoinB.That’sourminimumjoiningageC.wouldthatdoLibrarian:Goodmorning,North
违反合同民事责任的承担方式有()。
一般认为,北宋风俗画《清明上河图》描绘的是什么季节的景象?()
当使用“TABLESTRUCTURE”对话框从数据库中删除一个字段时,该字段中的数据将()。
SomerecenthistorianshavearguedthatlifeintheBritishcoloniesinAmericafromapproximately1763to1789wasmarkedbyin
Althougheachbabyhasanindividualscheduleofdevelopment,generalpatternsofgrowthhavebeenobservedThreeperiodsofdev
最新回复
(
0
)