首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
admin
2019-07-28
71
问题
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
选项
答案
设秩(Ⅰ)=秩(Ⅱ)=r,且设组(Ⅰ)和组(Ⅱ)的极大线性无关组分别为α
1
,α
2
,…α
r
;β
1
,β
2
,…,β
r
,归结证明α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
等价.可用两种方法证之. 一种方法是作向量组(Ⅲ):α
1
,α
2
,…,α
r
,β
1
,β
2
,…,β
r
证明α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
均为组(Ⅲ)的极大线性无关组,从而α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
等价. 另一种方法是用矩阵表示法,令(α
1
,α
2
,…,α
r
)=(β
1
,β
2
,…,β
r
)A,其中A为r阶矩阵.因α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
都线性无关,故A可逆,从而(β
1
,β
2
,…,β
r
)=(α
1
,α
2
,…,α
r
)A
-1
. 于是β
1
,β
2
,…,β
r
可由α
1
,α
2
,…,α
r
线性表出.当然,α
1
,α
2
,…,α
r
也可由β
1
,β
2
,…,β
r
线性表示,所以α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
等价,故组(Ⅰ)与组(Ⅱ)等价. 证一 设秩(Ⅰ)=秩(Ⅱ)=r,且α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
分别为组(Ⅰ)和组(Ⅱ)的极大线性无关组.作向量组(Ⅲ):α
1
,α
2
,…,α
r
,β
1
,β
2
,…,β
r
. 下证α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
均为组(Ⅲ)的极大线性无关组. 因组(Ⅰ)能由组(Ⅱ)线性表出,故α
1
,α
2
,…,α
r
也能由β
1
,β
2
,…,β
r
线性表出,从而组(Ⅲ)能由β
1
,β
2
,…,β
r
线性表出,又β
1
,β
2
,….β
r
线性无关,故β
1
,β
2
,…,β
r
为组(Ⅲ)的一个极大线性无关组,从而秩(Ⅲ)=r,所以组(Ⅲ)中的r个线性无关的向量组也是组(Ⅲ)的一个极大线性无关组,又因同一向量组中的极大线性无关组必等价,故α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
等价.显然组(Ⅰ)与α
1
,α
2
,…,α
r
等价,组(Ⅱ)与β
1
,β
2
,…,β
r
等价,故组(Ⅰ)与组(Ⅱ)必等价(等价的传递性). 证二 因组(Ⅰ)可由组(Ⅱ)线性表示,故α
1
,α
2
,…,α
r
可由β
1
,β
2
,…,β
r
线性表示,于是存在r阶矩阵A,使 (α
1
,α
2
,…,α
r
)=(β
1
,β
2
,…,β
r
)A. 利用下述命题:设α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
r
(r≤n)都是n维向量,如果β
1
,β
2
,…,β
r
线性无关且 (α
1
,α
2
,…,α
r
)=(β
1
,β
2
,…,β
r
)A, 其中A为r阶矩阵,则α
1
,α
2
,…,α
r
线性无关的充分必要条件是A为可逆矩阵. 可知,A为可逆矩阵,且(β
1
,β
2
,…,β
r
)=(α
1
,α
2
,…,α
r
)A
—1
.则β
1
,β
2
,…,β
r
可由α
1
,α
2
,…,α
r
线性表出,由等价的定义知α
1
,α
2
,…,α
r
与β
1
,β
2
,…,β
r
等价.又组(Ⅰ)与α
1
,α
2
,…,α
r
等价,组(Ⅱ)与β
1
,β
2
,…,β
r
,等价,由等价的传递性得到组(Ⅰ)与组(Ⅱ)等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/2TN4777K
0
考研数学二
相关试题推荐
=_______.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f′(ξ)=f(ξ).
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0’试证明存在ξ∈(a,b)使=0.
设A是三阶矩阵,B是四阶矩阵,且|A|=2,|B|=6,则为().
设A为n阶可逆矩阵,A2=|A|E.证明:A=A*.
设A为n阶矩阵,且Ak=O,求(E-A)-1.
设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
设函数y(x)在区间[1,+∞)上具有一阶连续导数,且满足y(1)=及x2yˊ(x)+∫1x(2t+4)yˊ(t)dt+2∫1xy(t)dt=,求y(x).[img][/img]
随机试题
对于医疗卫生机构中发生的殴打护士情形,进行行政处罚的机关是
在Word编辑状态文档中的一部分内容被选择,执行编辑菜单中的“剪切”命令后()。
下列百年老店位于豫园新路上的是()。
被投诉者应当在接到投诉通知书之日起15日内做出书面答复。()
各级公安机关和民警要善于从政治上考虑问题,判断形势,增强(),在事关全局、事关政治方向、事关根本原则等重大问题上始终保持清醒和坚定。
下列与“孟母三迁”的故事含义最接近的是()。
近年来,有关人体酸碱性及健康的宣传一直未停歇,“PH值”更是成为大家耳熟能详的词汇。诸如“酸性体质容易引发疾病”等说法,下列说法正确的是:
A、 B、 C、 D、 C每行前两个图形叠加,去同存异,得到第三个图形。
SQL语言中的GRANT和REVOKE语句主要用来维护数据的______。
Electricityplaysanessentialpartinourlife.Noonecandenythatelectriclightisnecessaryforpeople’slife.However,ca
最新回复
(
0
)