首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x0∈(a,b)使 ( )
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x0∈(a,b)使 ( )
admin
2018-07-23
116
问题
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x
0
∈(a,b)使 ( )
选项
A、fˊ(x
0
)> fˊ(a).
B、fˊ(x
0
)> fˊ(b).
C、fˊ(x
0
)=
[5fˊ(b)+2fˊ(a)].
D、fˊ(x
0
)=
[5fˊ(b)-2fˊ(a)].
答案
C
解析
由于fˊ(a)≠fˊ(b),不妨设fˊ(a)< fˊ(b).于是有
所以fˊ(a)<
[5fˊ(b)+2fˊ(a)]< fˊ(b).
若fˊ(a)> fˊ(b),类似地可证fˊ(a)>
[5fˊ(b)+2fˊ(a)]> fˊ(b).
一般地,设μ为介于fˊ(a)与fˊ(b)之间的任意一个确定的值.在本题条件下有结论:存在x
0
∈(a,b)使
fˊ(x
0
)=μ.
这个定理有点类似于连续函数介值定理,不过这里并不需要fˊ(x)连续而只要在[a,b] 上fˊ(x)存在即可.此定理在一般教科书上没有讲,但考研中经常用到.证明如下:令
ф(x)= f (x)-μx.
有
фˊ(x)= fˊ(x)-μ.
фˊ(a)= fˊ(a)-μ<0.фˊ(b)= fˊ(b)-μ>0.
于是知,存在x
1
∈(a,b)使ф (x
1
)<ф (a).又存在x
2
∈(a,b) (b)使中ф (x
2
)<ф (b),故ф (a)与ф (b)都不是ф(x)在[a,b]上的最小值.但ф(x)是在[a,b]的连续函数,它在[a,b]上必有最小值.记ф(x)在[a,b]上的最小值点x
0
∈(a,b),由费马定理知,有фˊ(x
0
)=0.即存在x
0
∈(a,b)使
fˊ(x
0
)=μ.
回到本题,由于μ=
[5fˊ(b)+2fˊ(a)]介于fˊ(a) 与fˊ(b)之间,所以存在x
0
∈(a,b)使
fˊ(x
0
)=
[5fˊ(b)+2fˊ(a)].[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/Msj4777K
0
考研数学二
相关试题推荐
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.0×
[*]
设z=f(e2siny,x2+y2),其中f具有二阶连续偏导数,求
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
随机试题
voidf(intn){if(n==0)return;else{printf("%d",n%2);f(n-1);voidmain(){f
A.蠕动B.分节运动C.集团蠕动D.容受性舒张小肠特有的运动形式为
男性,52岁,十二指肠渍疡病史10年,几乎每年发作一次,自觉今年格外重,今日晨起突然腹痛难忍,呈刀割样,上腹开始,很快扩散至全腹,来诊,见患者面色苍白,冷汗,肢体发凉,BP14/12kPa,脉搏90次/分,查体时病人表情痛苦,不敢深呼吸,全腹压痛,反跳痛,
2008年4月1日,甲公司将其厂房无偿转让给乙公司,导致甲公司的债权人丙公司无法实现债权,丙公司于2009年1月1日才得知该情况,则丙公司撤销权的截止日期为()。
汉字输入编码方案中的自然码属于()类编码。
需要查阅已入档的会计凭证是必须办理借阅手续。其他单位因特殊原因需要使用原始凭证时,经本单位的()批准,可以复制。
健康素质只是脱贫致富的自然物质基础。而文化素质则是影响脱贫致富进程的关键性因素。如果物质上的脱贫不同时伴随文化上及精神上的脱贫,那么真正意义上的脱贫致富将难以实现。可见( )
江老师使用Word编写完成了课程教案,需根据该教案创建PowerPoint课件,最优的操作方法是()。
以下不属于第四代计算机的是()。
Whenyouopenyourelectronicmail,youmayfindinformationabouthowtobuymedicine,cheapairlinetickets,books,computerp
最新回复
(
0
)