首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x0∈(a,b)使 ( )
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x0∈(a,b)使 ( )
admin
2018-07-23
66
问题
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x
0
∈(a,b)使 ( )
选项
A、fˊ(x
0
)> fˊ(a).
B、fˊ(x
0
)> fˊ(b).
C、fˊ(x
0
)=
[5fˊ(b)+2fˊ(a)].
D、fˊ(x
0
)=
[5fˊ(b)-2fˊ(a)].
答案
C
解析
由于fˊ(a)≠fˊ(b),不妨设fˊ(a)< fˊ(b).于是有
所以fˊ(a)<
[5fˊ(b)+2fˊ(a)]< fˊ(b).
若fˊ(a)> fˊ(b),类似地可证fˊ(a)>
[5fˊ(b)+2fˊ(a)]> fˊ(b).
一般地,设μ为介于fˊ(a)与fˊ(b)之间的任意一个确定的值.在本题条件下有结论:存在x
0
∈(a,b)使
fˊ(x
0
)=μ.
这个定理有点类似于连续函数介值定理,不过这里并不需要fˊ(x)连续而只要在[a,b] 上fˊ(x)存在即可.此定理在一般教科书上没有讲,但考研中经常用到.证明如下:令
ф(x)= f (x)-μx.
有
фˊ(x)= fˊ(x)-μ.
фˊ(a)= fˊ(a)-μ<0.фˊ(b)= fˊ(b)-μ>0.
于是知,存在x
1
∈(a,b)使ф (x
1
)<ф (a).又存在x
2
∈(a,b) (b)使中ф (x
2
)<ф (b),故ф (a)与ф (b)都不是ф(x)在[a,b]上的最小值.但ф(x)是在[a,b]的连续函数,它在[a,b]上必有最小值.记ф(x)在[a,b]上的最小值点x
0
∈(a,b),由费马定理知,有фˊ(x
0
)=0.即存在x
0
∈(a,b)使
fˊ(x
0
)=μ.
回到本题,由于μ=
[5fˊ(b)+2fˊ(a)]介于fˊ(a) 与fˊ(b)之间,所以存在x
0
∈(a,b)使
fˊ(x
0
)=
[5fˊ(b)+2fˊ(a)].[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/Msj4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
A、 B、 C、 D、 A
已知函数y=y(x)在任意点x处的增量[*]且当△x→0时,a是△x的高阶无穷小,y(0)=π,则y(1)等于
函数f(x)在证明:当%≥0时,成立不等式e-x≤f(x)≤1.
设函数f(x)在[a,b]上连续,f(a)=f(b)=0,且fˊ(a)<0,fˊ(b)<0.求证:f(x)在(a,b)内必有一个零点.
参数a取何值时,线性方程组有无数个解?求其通解.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设则d2y/dx2=_______。
随机试题
A.燥邪伤津B.外感温热病初期C.里热炽盛,津液大伤D.阴虚证E.消渴病口干微渴,兼发热者,多属于
孙某在与朋友交谈时了解到县卫生局局长谢某曾经贪污公款3万余元,后孙某向公安局报案,县公安局告知该案不属于公安机关管辖,告知其应向县检察院举报。县检察院立案侦查后发现谢某没有贪污的行为,但是受贿数额巨大,可能被判处无期徒刑或者死刑,于是起诉至市中级人民法院。
建设工程施工阶段的工程进度控制工作的主要内容包括()。
在起重工程中,钢丝绳一般用作缆风绳、滑轮组跑绳和吊索,用作滑轮组跑绳的安全系数一般不小于()。
某施工单位承接了某市办公楼的消防设施安装工程,该工程主要包括室内外消火栓系统、自动喷水灭火系统、通风与防排烟系统及灭火器等消防设施。工程项目开工后,施工单位采购的消防设施、组件与材料陆续到达现场,现场项目部邀请监理单位、建设单位共同对消防设施进行验收。工程
按照投资基金能否收回,可以分为( )。
在Word文档中选定文本后,移动该文本的方法可以()。
下列不属于食物中毒症状的是()。
所谓“治理”,一个很重要的方面是“建设”,这是社会治安综合治理工程的一项积极措施。因此,应是()
TheAmericanFamilyIntheAmericanfamilythehusbandandwifeusuallyshareimportantdecisionmaking.Whenthechildrenareo
最新回复
(
0
)