首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x0∈(a,b)使 ( )
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x0∈(a,b)使 ( )
admin
2018-07-23
112
问题
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a) ≠fˊ(b).则必存在x
0
∈(a,b)使 ( )
选项
A、fˊ(x
0
)> fˊ(a).
B、fˊ(x
0
)> fˊ(b).
C、fˊ(x
0
)=
[5fˊ(b)+2fˊ(a)].
D、fˊ(x
0
)=
[5fˊ(b)-2fˊ(a)].
答案
C
解析
由于fˊ(a)≠fˊ(b),不妨设fˊ(a)< fˊ(b).于是有
所以fˊ(a)<
[5fˊ(b)+2fˊ(a)]< fˊ(b).
若fˊ(a)> fˊ(b),类似地可证fˊ(a)>
[5fˊ(b)+2fˊ(a)]> fˊ(b).
一般地,设μ为介于fˊ(a)与fˊ(b)之间的任意一个确定的值.在本题条件下有结论:存在x
0
∈(a,b)使
fˊ(x
0
)=μ.
这个定理有点类似于连续函数介值定理,不过这里并不需要fˊ(x)连续而只要在[a,b] 上fˊ(x)存在即可.此定理在一般教科书上没有讲,但考研中经常用到.证明如下:令
ф(x)= f (x)-μx.
有
фˊ(x)= fˊ(x)-μ.
фˊ(a)= fˊ(a)-μ<0.фˊ(b)= fˊ(b)-μ>0.
于是知,存在x
1
∈(a,b)使ф (x
1
)<ф (a).又存在x
2
∈(a,b) (b)使中ф (x
2
)<ф (b),故ф (a)与ф (b)都不是ф(x)在[a,b]上的最小值.但ф(x)是在[a,b]的连续函数,它在[a,b]上必有最小值.记ф(x)在[a,b]上的最小值点x
0
∈(a,b),由费马定理知,有фˊ(x
0
)=0.即存在x
0
∈(a,b)使
fˊ(x
0
)=μ.
回到本题,由于μ=
[5fˊ(b)+2fˊ(a)]介于fˊ(a) 与fˊ(b)之间,所以存在x
0
∈(a,b)使
fˊ(x
0
)=
[5fˊ(b)+2fˊ(a)].[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/Msj4777K
0
考研数学二
相关试题推荐
[*]
设ξ1,ξ2,ξ3,ξ1+aξ2一2ξ3均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解()
证明下列命题:设f(x,y)定义在全平面上,且则f(x,y)恒为常数;
设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1.0)=__________.
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续;(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续;(Ⅲ)f(x,y)在点(xo,yo)处可微;(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在;
设4阶矩阵且矩阵A满足关系式A(E—C-1B)TCT=E,其中E为4阶单位矩阵,C-1表示C的逆矩阵,CT表示C的转置矩阵.将上述关系式化简并求矩阵A.
求极限:
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求.
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
设则f(x+1)一f(x)=___________.
随机试题
直接参与嘌呤、嘧啶、尿素生物合成的氨基酸是
对有症状的沟纹舌患者应
机房专业空调中视液镜的作用主要是观察()和观察制冷剂含水率。
关于MMPI,下列说法中错误的是()。
下图是连续分裂的细胞在各个不同时期DNA含量的测定结果,请根据此图回答:完整细胞周期是从_______开始,到_______为止。
批复适用于答复下级机关请示事项。()
线性回归的基本假设有()
和平与发展的关系是()。
运算器的组成部分不包括( )。
Thesecretarywantsto______allthefileclerkstomakepreparationsforthecompanyChristmasparty.
最新回复
(
0
)