首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×m矩阵,已知Em+AB可逆. 设,其中a1b1+a2b2+a3b3=0,证明W可逆,并求W-1.
设A是m×n矩阵,B是n×m矩阵,已知Em+AB可逆. 设,其中a1b1+a2b2+a3b3=0,证明W可逆,并求W-1.
admin
2021-07-27
87
问题
设A是m×n矩阵,B是n×m矩阵,已知E
m
+AB可逆.
设
,其中a
1
b
1
+a
2
b
2
+a
3
b
3
=0,证明W可逆,并求W
-1
.
选项
答案
[*] 知E+AB可逆,则E+BA可逆,且(E+114)
-1
=E-B(E+AB)
-1
A,反之若E+BA可逆,则E+AB可逆,且(E+AB)
-1
=E-A(E+BA)
-1
B.因为E+BA=E+[b
1
,b
2
,b
3
][a
1
,a
2
,a
3
]
T
=E+[a
1
b
1
+a
2
b
2
+a
3
b
3
]=E+0=E,故E+BA可逆,(E+BA)
-1
=E.故W=E+AB可逆,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2Ty4777K
0
考研数学二
相关试题推荐
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。则有()
设A,B为行阶矩阵,且A,B的特征值相同,则().
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
求满足初始条件y"+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
设A=(aij)为3阶非零实矩阵,且已知Aij=aij(其中Aij为aij的代数余子式),i,j=1,2,3.证明:A可逆,并求|A|与A-1.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1.正确命题的个数为()
微分方程y"+2y’+2y=e一xsinx的特解形式为()
设有n元实二次型f(x1,x2,x3)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中a(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k1+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
随机试题
节律性起始技术是属于
有关HELLP综合征,以下哪项是错误的
中国现行版药典是
下列最适合使用美托洛尔治疗的疾病是
阿托品用于解除消化道痉挛时,常可引起口干,属于氯霉素或抗肿瘤药所致的骨髓抑制,属于
甲向首饰店购买钻石戒指二枚,标签表明该钻石为天然钻石,买回后被人告知实为人造钻石。甲遂多次与首饰店交涉,历时1年零6个月,未果。现甲欲以欺诈为由诉请法院撤销该买卖关系,其主张能否得到支持?( )。
货币市场基金同时以股票、债券为主要投资对象,通过不同资产类别的配置投资,实现风险和收益上的平衡。()
从绝对量的构成看,资本成本包括()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
设二维随机变量(X,Y)满足E(XY)=EXEY,则X与Y
最新回复
(
0
)