首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)mxn,y=(y1,y2,…,yn)T,b=(b1,b2,…,bm)T,x=(x1,x2,…,xm)T,证明方程组Ay=有解的充分必要条件是方程组无解(其中0是n×1矩阵)。
设A=(aij)mxn,y=(y1,y2,…,yn)T,b=(b1,b2,…,bm)T,x=(x1,x2,…,xm)T,证明方程组Ay=有解的充分必要条件是方程组无解(其中0是n×1矩阵)。
admin
2019-11-04
36
问题
设A=(a
ij
)
mxn
,y=(y
1
,y
2
,…,y
n
)
T
,b=(b
1
,b
2
,…,b
m
)
T
,x=(x
1
,x
2
,…,x
m
)
T
,证明方程组Ay=有解的充分必要条件是方程组
无解(其中0是n×1矩阵)。
选项
答案
必要性:设方程组Ay=b有解,则对满足A
T
x=0的向量x
0
,b
T
x
0
=y
T
A
T
x
0
=y
T
×0=0从而[*],可见方程组[*]无解。 充分性:设方程组[*]无解,则线性方程组的增广矩阵的秩 [*] 另一方面, [*] 所以有[*]。又由于[*]≥r(A),可知r(A)=[*],从而方程组Ay=b有解。
解析
转载请注明原文地址:https://kaotiyun.com/show/2US4777K
0
考研数学一
相关试题推荐
设曲线L的长度为l,且=M.证明:|∫LPdx+Qdy|≤Ml.
利用夹逼定理证明:
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x。(Ⅰ)记P=(x,Ax,A2x)。求三阶矩阵B,使A=PBP-1;(Ⅱ)计算行列式|A+E|。
设矩阵A=可逆,向量α=是矩阵A*的特征向量,其中A*是A的伴随矩阵,求a,b的值.
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:对0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)一f(一θx)];
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且证明:
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)