首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
admin
2021-11-15
64
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),AB=(γ
1
,γ
2
,…,γ
n
),记向量组(Ⅰ):α
1
,α
2
,…,α
n
;(Ⅱ):β
1
,β
2
,…,β
n
;(Ⅲ):γ
1
,γ
2
,…,γ
n
,若向量组(Ⅲ)线性相关,则( ).
选项
A、(Ⅰ),(Ⅱ)都线性相关
B、(Ⅰ)线性相关
C、(Ⅱ)线性相关
D、(Ⅰ),(Ⅱ)至少有一个线性相关
答案
D
解析
若α
1
,α
2
,…,α
m
线性无关,β
1
,β
2
,…,β
n
线性无关,则,r(A)=n,r(B)=n,于是r(AB)=n.因为γ
1
,γ
2
,…,γ
n
线性相关,所以r(AB)=r(γ
1
,γ
2
,…,γ
n
)<n,故α
1
,α
2
,…,α
n
与β
1
,β
2
,…,β
n
至少有一个线性相关,选(D).
转载请注明原文地址:https://kaotiyun.com/show/2Yy4777K
0
考研数学二
相关试题推荐
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解。
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解。
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z)。证明:.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(I)的基础解系。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求通解。
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
已知三阶矩阵A的三个特征值为1,2,3,则(A-1)*的特征值为_________.
随机试题
教师是社会的专职教育者,教师的根本职能就是______。
ThreeWaystoBecomeMoreCreativeEveryonehas【C1】________(imagine),butmostofusforgethowtoaccessit.Creativityisn’
下列参建单位中不参加设计交底会议的单位为( )。
某企业购买材料一批,并向供货方开出银行承兑汇票一张,承诺3个月后付款。假若3个月后,企业无力偿付,会计人员对此的会计处理应为()。
情景模拟测试的常用方法有()。
城里人能够看到什么月亮?即使偶尔看到远远的天空上一丸灰白,但_______于无数路灯之中,磨损于各种噪音之中,稍纵即逝在丛林般的水泥高楼之间,不过像死鱼眼睛一只,丢弃在_______的垃圾里。填入画横线部分最恰当的一项是:
宋代“太学三舍选察升补之法”的时期是
标志着国民党政权在大陆统治区覆灭的重大事件是()
常见的文件系统的物理结构有三种:连续结构、链接结构和______。
Bythemid-nineteenthcentury,theterm"ice-box"hadenteredtheAmericanlanguage,buticewasstillonlybeginningtoaffect
最新回复
(
0
)