首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数M(χ,y)有连续二阶偏导数,满足=0,又满足下列条件:u(χ,2χ)=χ,uχ′(χ,2χ)=χ2(即uχ′(χ,y)|y=2χ=2χ2),求χχ〞(χ,2χ),uχy〞(χ,2χ),uyy〞,(χ,2χ).
设函数M(χ,y)有连续二阶偏导数,满足=0,又满足下列条件:u(χ,2χ)=χ,uχ′(χ,2χ)=χ2(即uχ′(χ,y)|y=2χ=2χ2),求χχ〞(χ,2χ),uχy〞(χ,2χ),uyy〞,(χ,2χ).
admin
2019-02-23
48
问题
设函数M(χ,y)有连续二阶偏导数,满足
=0,又满足下列条件:u(χ,2χ)=χ,u
χ
′
(χ,2χ)=χ
2
(即u
χ
′
(χ,y)|
y=2χ
=2χ
2
),求
χχ
〞
(χ,2χ),u
χy
〞
(χ,2χ),u
yy
〞
,(χ,2χ).
选项
答案
将u(χ,2χ)=χ两边对χ求导,由复合函数求导法及u′
χ
(χ,2χ)=χ
2
得 u′
χ
(χ,2χ)+2u′
y
(χ,2χ)=1,u′
y
(χ,2χ)=[*](1-χ
2
). 现将u′
χ
(χ,2χ)=χ
2
,u′
y
(χ,2χ)=[*](1-χ
2
)分别对χ求导得 u〞
χχ
(χ,2χ)+2u〞
χy
(χ,2χ)=2χ, ① u〞
yχ
(χ,2χ)+2u〞
yy
(χ,2χ)=-χ. ② ①式×2-②式,利用条件u〞
χχ
(χ,2χ)-u〞
yy
(χ,2χ)=0及u〞
χy
(χ,2χ)=u〞
yχ
(χ,2χ)得 3u〞
χy
,(χ,2χ)=5χ,u〞
χy
(χ,2χ)=[*]χ. 代入①式得u〞
χχ
(χ,2χ)=u〞
yy
(χ,2χ)=-[*]χ.
解析
转载请注明原文地址:https://kaotiyun.com/show/2aj4777K
0
考研数学二
相关试题推荐
求极限
设x3-3xy+y3=3确定y为x的函数,求函数y=y(x)的极值点.
已知α=(1,1,-1)T是A=的特征向量,求a,b和α的特征值λ.
设α1,α2,…,αm和β1,β2,…,βm都是n维向量组,k1,k2,…,km和P1,P2,…,pm都是不全为0的数组,使得(k1+p1)α1+(k2+p2)α2+…+(km+pm)αm+(k1-p1)β1+(k2-p2)β2+…+(km-pm)βm=0
设f(χ)与g(χ)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:(b-a)∫abf(χ)g(χ)dχ≥∫abf(χ)dχ∫abg(χ)dχ.(*)
设函数f(χ)在(-∞,+∞)内满足f(χ)=f(χ-π)+sinχ,且f(χ)=χ,χ∈[0,π),求∫π3πf(χ)dχ.
积分∫aa+2πcosχln(2+cosχ)dχ的值
函数的无穷间断点的个数是()
二次型f(x1,x2,x3)=(a1x1+a2x2+ax3x3)(b1x1+b2x2+b3x3)的矩阵为__________。
用正交变换将二次型f(x1,x2,x3)=x12一2x22一2x32一4x1x2+4x1x3+8x3x3化为标准形,并给出所施行的正交变换。
随机试题
某女,56岁。心前区疼痛5年,每逢秋冬季加重,近半月时感心前区刺痛,且放射至左肩背部,伴心悸胸闷,舌质紫暗,脉细涩。辨证为
抛物线y2=4x与直线x=3所围成的平面图形绕x轴旋转一周形成的旋转体体积是()。
相对于直接融资来说,间接融资的信誉度较高,风险性相对较小,融资的稳定性较强。()
在美国、加拿大和英围,早餐麦片极受欢迎,是最盈利的行业之一。但是,在法国、德国、意大利以及其他很多国家,早餐麦片就不怎么受欢迎,利润也不高。这体现的是()。
美术是人类感受美、表现美和创造美的重要形式,也是表达自己对周围世界的认识和情绪态度的独特方式。()
下列说法不是杜威实用主义教育学论点的是()。
坚持中国特色新型工业化道路,就要做到()。
47,53,64,36,38,62,29,()
天气预报能为我们的生活提供良好的帮助,它属于计算机的()应用。
Anyphysicaltheoryisalwaysprovisional,inthesensethatitisonlyahypothesis;youcanneverproveit.Nomatterhowmany
最新回复
(
0
)