首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(0,+∞)三次可导,且当χ∈(0,+∞)时|f(χ)|≤M0,|f″′(χ)|≤M3,其中M0,M3为非负常数,求证f〞(χ)在(0,+∞)上有界.
设f(χ)在(0,+∞)三次可导,且当χ∈(0,+∞)时|f(χ)|≤M0,|f″′(χ)|≤M3,其中M0,M3为非负常数,求证f〞(χ)在(0,+∞)上有界.
admin
2016-10-21
89
问题
设f(χ)在(0,+∞)三次可导,且当
χ∈(0,+∞)时|f(χ)|≤M
0
,|f″′(χ)|≤M
3
,其中M
0
,M
3
为非负常数,求证f〞(χ)在(0,+∞)上有界.
选项
答案
分别讨论χ>1与0<χ≤1两种情形. 1)当χ>1时考察二阶泰勒公式 [*] 两式相加并移项即得 f〞(χ)=f(χ+1)+f(χ-1)-2f(χ)+[*][f″′(η)-f″′(ξ)], 则当χ>1时有|f〞(χ)|≤4M
0
+[*]M
3
. 2)当0<χ≤1时对f〞(χ)用拉格朗日中值定理,有 f〞(χ)=f〞(χ)-f〞(1)+f〞(1)=f″′(ξ)(χ-1)+f〞(1),其中ξ∈(χ,1). [*]|f〞(χ)|≤|f″′(χ)|≤|χ-1|+|f〞(1)|≤M
3
+|f〞(1)| (χ∈(0,1]). 综合即知f〞(χ)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/lTt4777K
0
考研数学二
相关试题推荐
设函数f(x)连续,且f(0)≠0,求极限.
设函数f(x)在(-∞,+∞)内连续,且F(x)=∫0x(x-2t)f(t)dt.试证:若f(x)为偶函数,则F(x)也是偶函数。
设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是________。
∫-11(|x|+x)e-|x|dx=________。
求下列极限:
设a1>0,an+1==ln(1+an),证明:存在,并求此极限.
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
设z=z(x,y)是由方程x2+y2+z2-2x+4y-6z-11=0所确定的函数,求该函数的极值。
在下列各题中,确定函数关系式中所含的参数,使函数情况满足所给的初始条件:x2-y2=C,y|x=0=5
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
下列哪种汇付方式可以经背书转让【】
白术的炮制方法是()。
心肌自律性高低主要取决于()
(2010年)圆周ρ=cosθ,ρ=2cosθ及射线θ=0,所围图形的面积S为()。
对财产清查中查明的财产物资的盘盈盘亏,在审批之前应编制记账凭证并及时调整有关账簿记录,下列关于该工作目的的表述中,正确的是()。
44,52,68,76,92,()。
一项对Naota国男女收入差异的研究结果表明,全职工作的妇女的收入是全职工作的男人的收入的80%。然而,其他调查结果却一致显示,在Naota所有受雇妇女的平均年收入只是所有受雇男性的平均年收入的65%。下面哪一项,如果也被调查所证实,最有助于解释上
当前,我国科技事业实现了历史性、整体性、格局性重大变化,重大创新成果竞相涌现,一些前沿方向开始进入并行、领跑阶段。但也应看到,我国科技领域仍然存在一些亟待解决的问题,关键核心技术受制于人的局面没有得到根本性改变。现在,我们迎来了世界新一轮科技革命和产业变革
东临碣石:以观沧海
认为儿童的侵犯行为是通过替代强化而获得的理论是()
最新回复
(
0
)