首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得
admin
2017-04-24
52
问题
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得
选项
A、f(x)在(0,δ)内单调增加.
B、f(x)在c一δ,0)内单调减少.
C、对任意的x∈(0,δ)有f(x)>f(0).
D、对任意的x∈(一δ,0)有f(x)>f(0).
答案
C
解析
由于f’(0)=
>0,由极限的保号性知,存在δ>0,当x∈(一δ,0)或x∈(0,δ)时,
>0,而当x∈(0,δ)时x>0,则此时f(x)一f(0)>0,即f(x)>f(0),故应选(C).
本题主要考查当函数在一点处导数大于零时,函数在该点邻近的性态.关于此问题有以下结论:
“若f’(x
0
)>0,则存在δ>0,使得当x∈(x
0
一δ,δ)时,有f(x)<f(x
0
);当x∈(x
0
,x
0
+δ)时,f(x)> f(x
0
)”.(若f’(x
0
)<0时有类似的结论)本结论可利用本题题解中的方法证明,即利用导数定义和函数极限的保号性证明,本题很容易选(A),这个选择是错误的,事实上没有以下结论:“若f(x
0
)>0,则存在δ>0,在 (x
0
一δ,x
0
+δ)内f(x)单调增”,反例如下
可以证明f’(0)=1>0,但f(x)在x=0的任何邻域内却不单调增,事实上可以证明,在x=0的任何邻域内既有使f’(x)>0的点,也有使得f’(x)<0的点.
转载请注明原文地址:https://kaotiyun.com/show/2ft4777K
0
考研数学二
相关试题推荐
求函数y=(x-1)eπ/2+arctanx的单调区间与极值,并求该曲线的渐近线.
证明:当x>0时,x2>(1+x)ln2(1+x).
假设对于一切实数x,函数f(x)满足等式f’(x)=x2+∫0xf(t)dt,且f(0)=2,则f(x)=________。
设X1,X2均服从参数为λ的指数分布,且相互独立,求X1+X2的密度函数.
设A,B为同阶可逆矩阵,则().
设矩阵A与B相似,且求a,b的值;
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
(2009年试题,23)设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(I)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
简述公司集团的主要作用。
A.支气管哮喘B.支气管扩张C.慢性支气管炎、肺气肿D.支气管肺癌E.特发性肺间质纤维化局限性哮鸣音
患儿用药导致第八对颅神经损害,造成听力减退,或永久性耳聋,最大可能是应用了哪类药物
患者,男性,65岁,主因咳嗽、咳痰10年,加重伴痰中带血4个月入院。吸烟30余年,20支/d。查体:右肺呼吸音粗,散在细湿啰音。有慢性支气管炎病史10年,无高血压、糖尿病病史患者经过治疗后,支气管胸膜瘘痊愈。术后病理:右肺上叶尖后段不规则形低分化腺癌,
A.促甲状腺素B.绒促性素C.破伤风人免疫球蛋白D.结合雌激素E.重组人促红素在运输中应冷库贮存并避免冻结的药品是
某运转设备的安装水平度允许偏差为纵向0—10,/1000、横向0.20,/1000,测量人员可选用的水平仪精度有()。
在儿童早期,附属内驱力最为突出;到儿童后期和少年期,_________就成为一个强有力的动机因素。
对违法犯罪分子的改造工作,是教育人、挽救人和防止重新犯罪的特殊预防工作。()
Iwouldn’tmarryPatevenifshe______thelastwomanonearth.
AncientGreekphilosopherAristotleviewedlaughteras"abodilyexerciseprecioustohealth."But【B1】______someclaimstothe
最新回复
(
0
)