首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=_________.
[2008年] 设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=_________.
admin
2021-01-25
75
问题
[2008年] 设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A
-1
一E|=_________.
选项
答案
3
解析
解一 因A的特征值为1,2,2,故A
-1
的特征值为1,1/2,1/2.因而4A
-1
一E的特征值为
λ
1
=4×1—1=3, λ
2
=4×(1/2)一1=1, λ
3
=4×(1/2)一1=1,
故 |4A
-1
一E|=λ
1
λ
2
λ
3
=3×1×1=3.
解二 所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如果A与对角矩阵相似,则存在可逆矩阵P,使得P
-1
AP—diag(1,2,2)①=Λ,即A=PΛP
-1
.于是
A
-1
=PΛ
-1
P
-1
, 4A
-1
一E=4.PΛ
-1
P
-1
一PEP
-1
=P(4Λ
-1
-E)P
-1
,
两端取行列式得到|4A
-1
一E|=|P||4Λ
-1
一E||P
-1
|=|4Λ
-1
一E|=|4diag(1,1/2,l/2)一E|=|diag(3,1,1)|=3.
转载请注明原文地址:https://kaotiyun.com/show/2gx4777K
0
考研数学三
相关试题推荐
(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则
从n阶行列式的展开式中任取一项,此项不含a11的概率为,则n=______.
级数在一1<x<1内的和函数为________..
函数f(x)=cosx展开成的幂级数为________.
假设二次型f(x1,x2,x3)=(x+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定,则a的取值为_____.
无穷级数的收敛区间为___________。
[2012年]已知二次型f(x1,x2,x3)=XT(ATA)X的秩为2.求正交变换X=QY将f化为标准形.
某种产品的寿命T(单位:年)服从指数分布:f(t)=(1)求产品的平均寿命;(2)产品每件售价1万元,厂家规定:若产品在一年内损坏,厂家赔偿顾客0.8万元,若寿命超过一年,但不到平均寿命,厂家赔偿顾客0.5万元;若达到或超过平均寿命,厂家就不赔偿
(2017年)设函数f(x,y)具有一阶连续偏导数,且df(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=______。
[2011年]设A为三阶实对称矩阵,A的秩为2,且求矩阵A.
随机试题
A.请凭医师处方、在药师指导下购买和使用B.请仔细阅读药品使用说明书,并在医师或临床药师指导下购买和使用C.请仔细阅读药品使用说明书.并按说明使用或在药师指导下购买和使用D.请按医师处方或说明书购买和使用E.凭医师处方销售、购买和使用处方药的警
骨样骨瘤的临床特点
小儿何月龄克氏征阳性是正常的
楼梯水平段栏杆长度大于0.50m时,其扶手高度不应小于( )m。
某企业在财产清查中,发现盘亏设备一台。发现盘亏报批处理前,编制的会计分录所涉及的账户是( )。
甲注册会计师审计X公司2011年度财务报表,注册会计师在实施实质性程序中,发现以下情况:资料一:从主营业务收入和其他业务收入明细账中抽查到以下销售业务:(1)销售给A公司A产品计93.6万元(含税,增值税税率为17%),成本65万元。相关合同约定;
某园中班发生一例甲型肝炎病例,该园立即采取了以下措施:(1)将病儿进行隔离,时间为30天。(2)对病儿使用过的玩具、食具进行消毒。(3)对该中班儿童进行医学观察。请分析以下问题:(1)该园采取的措施哪些是恰当的?哪些不够明确?(2)该园还应采取哪些措施
太阳直射北回归线时,应是北半球的()。
RS-232C是(11)之间的接口标准,它是(12)协议,其机械特性规定RS-232C的D型连接器有(13)个插脚,使用RS-232C接口进行数据通信时,至少需用的信号线有(14)。当Modem和计算机相连时,按此标准需要连接的最少线数是(15)。
Whereisthewoman?
最新回复
(
0
)