首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( ).
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( ).
admin
2021-01-19
49
问题
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A
*
,B
*
分别为A,B的伴随矩阵,则( ).
选项
A、交换A
*
的第1列与第2列得B
*
B、交换A
*
的第1行与第2行得B
*
C、交换A
*
的第1列与第2列得一B
*
D、交换A
*
的第1行与第2行得一B
*
答案
C
解析
先由所给条件求出A与B的关系,再利用此关系及A
*
与B
*
的性质即可得
A
*
与B
*
的关系.
解一 由题设有B=E
12
A,由命题2.2.5.2得到
B
*
=B[B
-1
=∣E
12
A∣(E
12
A)
-1
=∣E
12
∣∣A∣A
-1
E
12
-1
=一∣A∣A
-1
E
12
=一A
*
E
12
,
即A
*
E
12
=一B
*
.因而交换A
*
的第1列与第2列得到一B
*
.仅(C)入选.
解二 由题设有B=E
12
A.则B
*
=(E
12
A)
*
.再由命题2.2.2.2(6)得到(E
12
A)
*
=
A
*
(E
12
)
*
,而由命题2.2.5.2(3)、(2)得到
E
*
12
=∣E
12
∣(E
12
)
-1
=(-1)E
12
=一E
12
,
故B
*
=A
*
E
*
12
=一A
*
E
12
,即一B
*
=A
*
E
12
.由此可知,交换A
*
的第1列与第2列得一B
*
.
仅(C)入选.
解三 下面由B=E
12
A找出B
*
与A
*
的关系,而B
*
=∣B∣B
-1
,A
*
=∣A∣A
-1
.为此,
只需找出∣B∣与∣A∣及B
-1
与A
-1
之关系即可.事实上,由B=E
12
A及命题2.2.5.2(2)、(3)得到
B
-1
=∣E
12
A∣
-1
=A
-1
E
12
-1
=A
-1
E
12
①
∣B∣=∣E
12
A∣=∣E
12
∣∣A∣=一∣A∣,②
将式①与式②左、右两端相乘,得到
∣B∣B
-1
=一∣A∣ A
-1
E
12
, 即 B
*
=一A
*
E
12
, 亦即 一B
*
=A
*
E
12
,于是交换A
*
的第1列与第2列得一B
*
.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/2j84777K
0
考研数学二
相关试题推荐
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式。证明:aij=一Aij<=>ATA=E,且|A|=一1。
求
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。根据t时刻液面
设连续性总体X的分布函数为其中θ(θ>0)为未知参数,从总体X中抽取样本X1,X2,…,Xn,求(1)θ的矩估计量;(2)θ的最大似然估计量.
求函数f(x)=nx(1一x)n在[0,1]上的最大值M(n)及.
求微分方程y"+2y’一3y=e-3x的通解.
已知累次积分,I=f(rcosθ,rsinθ)rdr,其中a>0为常数,则I可写成
设f(u,v)具有连续偏导数,且f’u(u,v)+f’v(u,v)=sin(u+v)eu+v,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
设函数f(x)有三阶导数,且=1,则()
随机试题
败血症(Septicemia)
下列哪项不是气管插管的拔管条件()。
有关呼吸困难的叙述,正确的是
下列除哪项外,均为心阳不足型心悸的主症
债务人有权处分的()财产可以用于抵押。
证券投资基金的收益主要来源于()。
情感激励法:是指通过良好的情感关系,激发被管理者的积极性,从而达到提高员工工作效率的目的。根据上述定义,下列属于情感激励法的是:
Nowadaysmanyscientistsdependonradiocarbonfordatingage-oldobjects.Radiocarbonisreliableindatinganobjectbackto
Theliabilitiesofthebankasshowninitsbalancesheetrepresentthe______whichitusesitsbusiness.
Thefirstmoving-picturetheaterwasprobablytheworkofHarryDavis,Pittsburgh’smostprosperousshowman.In1904,herented
最新回复
(
0
)