首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( ).
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( ).
admin
2021-01-19
72
问题
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A
*
,B
*
分别为A,B的伴随矩阵,则( ).
选项
A、交换A
*
的第1列与第2列得B
*
B、交换A
*
的第1行与第2行得B
*
C、交换A
*
的第1列与第2列得一B
*
D、交换A
*
的第1行与第2行得一B
*
答案
C
解析
先由所给条件求出A与B的关系,再利用此关系及A
*
与B
*
的性质即可得
A
*
与B
*
的关系.
解一 由题设有B=E
12
A,由命题2.2.5.2得到
B
*
=B[B
-1
=∣E
12
A∣(E
12
A)
-1
=∣E
12
∣∣A∣A
-1
E
12
-1
=一∣A∣A
-1
E
12
=一A
*
E
12
,
即A
*
E
12
=一B
*
.因而交换A
*
的第1列与第2列得到一B
*
.仅(C)入选.
解二 由题设有B=E
12
A.则B
*
=(E
12
A)
*
.再由命题2.2.2.2(6)得到(E
12
A)
*
=
A
*
(E
12
)
*
,而由命题2.2.5.2(3)、(2)得到
E
*
12
=∣E
12
∣(E
12
)
-1
=(-1)E
12
=一E
12
,
故B
*
=A
*
E
*
12
=一A
*
E
12
,即一B
*
=A
*
E
12
.由此可知,交换A
*
的第1列与第2列得一B
*
.
仅(C)入选.
解三 下面由B=E
12
A找出B
*
与A
*
的关系,而B
*
=∣B∣B
-1
,A
*
=∣A∣A
-1
.为此,
只需找出∣B∣与∣A∣及B
-1
与A
-1
之关系即可.事实上,由B=E
12
A及命题2.2.5.2(2)、(3)得到
B
-1
=∣E
12
A∣
-1
=A
-1
E
12
-1
=A
-1
E
12
①
∣B∣=∣E
12
A∣=∣E
12
∣∣A∣=一∣A∣,②
将式①与式②左、右两端相乘,得到
∣B∣B
-1
=一∣A∣ A
-1
E
12
, 即 B
*
=一A
*
E
12
, 亦即 一B
*
=A
*
E
12
,于是交换A
*
的第1列与第2列得一B
*
.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/2j84777K
0
考研数学二
相关试题推荐
计算,其中D是由x2-y2=1及y=0,y=1围成的平面区域.
设f(χ)二阶连续可导,f〞(0)=4,=0,求
求下列方程的通解:(Ⅰ)y’’3y’=2-6x;(Ⅱ)y’’+y=ccosxcos2x.
下列函数在指定区间上不存在原函数的是
求心形线r=a(1+cosθ)(常数a>0)的全长.
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…).(I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn;(Ⅱ)求(I)中的{xn)的极限值.
若z=f(x,y)可微,且则当x≠0时=______
设f(x)=,则当x→0时,f(x)是g(x)的().
(1997年试题,二)如图1—3—1所示,设在闭区间[a,b]上f(x)>0,f’(x)0记则().
(1997年)设F(χ)=∫χχ+2χesintsintdt,则F(χ)【】
随机试题
下列各项中,属于合同终止的原因有()。
A.计量资料B.等级资料C.计数资料D.描述资料E.推断资料按照资料发生程度的不同对资料进行有序分类后的资料,称为
片剂辅料中常用的崩解剂有()。
取得从业资格考试合格证明或者被注销从业资格的人员连续( )年未在机构中执业的,在申请从业资格前应当参加( )组织的后续职业培训。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
早产儿需要补充DHA是因为母乳中含量低。()
2022年6月5日上午,搭载()载人飞船的长征二号F遥十四运载火箭,在酒泉卫星发射中心点火升空,成功将航天员陈冬、刘洋、蔡旭哲顺利送人太空,中国空间站()首次载人飞行任务发射告捷。
下列选项中,不属于模块间耦合的是()。
SKPenny,Inc.currentlyawardslongserv-ingemployeeswithupto14daysofvacation______twoyears.
BarackandMichelleObamaunderstandtheheavyburdenofstudentloandebt.TheObamasdidnotpayofftheirstudentloansuntil
最新回复
(
0
)