首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( ).
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( ).
admin
2021-01-19
102
问题
[2005年] 设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A
*
,B
*
分别为A,B的伴随矩阵,则( ).
选项
A、交换A
*
的第1列与第2列得B
*
B、交换A
*
的第1行与第2行得B
*
C、交换A
*
的第1列与第2列得一B
*
D、交换A
*
的第1行与第2行得一B
*
答案
C
解析
先由所给条件求出A与B的关系,再利用此关系及A
*
与B
*
的性质即可得
A
*
与B
*
的关系.
解一 由题设有B=E
12
A,由命题2.2.5.2得到
B
*
=B[B
-1
=∣E
12
A∣(E
12
A)
-1
=∣E
12
∣∣A∣A
-1
E
12
-1
=一∣A∣A
-1
E
12
=一A
*
E
12
,
即A
*
E
12
=一B
*
.因而交换A
*
的第1列与第2列得到一B
*
.仅(C)入选.
解二 由题设有B=E
12
A.则B
*
=(E
12
A)
*
.再由命题2.2.2.2(6)得到(E
12
A)
*
=
A
*
(E
12
)
*
,而由命题2.2.5.2(3)、(2)得到
E
*
12
=∣E
12
∣(E
12
)
-1
=(-1)E
12
=一E
12
,
故B
*
=A
*
E
*
12
=一A
*
E
12
,即一B
*
=A
*
E
12
.由此可知,交换A
*
的第1列与第2列得一B
*
.
仅(C)入选.
解三 下面由B=E
12
A找出B
*
与A
*
的关系,而B
*
=∣B∣B
-1
,A
*
=∣A∣A
-1
.为此,
只需找出∣B∣与∣A∣及B
-1
与A
-1
之关系即可.事实上,由B=E
12
A及命题2.2.5.2(2)、(3)得到
B
-1
=∣E
12
A∣
-1
=A
-1
E
12
-1
=A
-1
E
12
①
∣B∣=∣E
12
A∣=∣E
12
∣∣A∣=一∣A∣,②
将式①与式②左、右两端相乘,得到
∣B∣B
-1
=一∣A∣ A
-1
E
12
, 即 B
*
=一A
*
E
12
, 亦即 一B
*
=A
*
E
12
,于是交换A
*
的第1列与第2列得一B
*
.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/2j84777K
0
考研数学二
相关试题推荐
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y’’.
设f(χ)二阶连续可导,f〞(0)=4,=0,求
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
求心形线r=a(1+cosθ)(常数a>0)的全长.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
若z=f(x,y)可微,且则当x≠0时=______
设数列{xn}和{yn}满足则当n→∞时,{yn}必为无穷小的充分条件是()
(1997年)已知y=f(χ)对一切的χ满足χf〞(χ)+3χ[f′(χ)]2=1-e-χ,若f′(χ0)=0(χ0≠0),则【】
(1997年试题,四)λ取何值时,方程组无解?有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(1997年)设F(χ)=∫χχ+2χesintsintdt,则F(χ)【】
随机试题
下列关于纤维蛋白溶解药的叙述,不正确的是
特殊感染性垃圾用什么垃圾袋装
某派出所以扰乱公共秩序为由扣押了高某的拖拉机。高不服,以派出所为被告提起行政诉讼。诉讼中,法院认为被告应是县公安局,要求变更被告,高不同意。法院下列做法中正确的是()。
烟光药、黑火药的Ⅰ类危险场所采用的仪表,应选择适应本场所的()。
实施性施工进度计划的编制应结合工程施工的具体条件,并以()所确定的里程碑事件的进度目标为依据。
一国征收进口附加税的目的在于()。
下列有关乳酸菌的叙述,正确的是()。
平均而言,今天受过教育的人的读书时间明显少于50年前受过教育的人的读书时间。但是,现在每年销售的书册数却比50年前增加了很多。以下除哪项外都有助于解释上述现象?
一台微型计算机要与局域网连接,必须具有的硬件是___________。
A、Theyfollowtheleadoffamouspeople.B、Theyliketotrysomethingnew.C、Theycanmakefriendsthroughpracticingyogatoget
最新回复
(
0
)