首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列隐函数的微分或导数: (Ⅰ)设ysinx-cos(x-y)=0,求dy; (Ⅱ)设方程确定y=y(x),求y’与y’’.
求下列隐函数的微分或导数: (Ⅰ)设ysinx-cos(x-y)=0,求dy; (Ⅱ)设方程确定y=y(x),求y’与y’’.
admin
2019-06-28
81
问题
求下列隐函数的微分或导数:
(Ⅰ)设ysinx-cos(x-y)=0,求dy;
(Ⅱ)设方程
确定y=y(x),求y’与y’’.
选项
答案
(Ⅰ)利用一阶微分形式不变性求得 d(ysinx)-dcos(x-y)=0, 即sinxdy+ycosxdx+sin(x-y)(dx-dy)=0, 整理得[sin(x-y)-sinx]dy=[ycosx+sin(x-y)]dx, 故 [*] (Ⅱ)将原方程两边取对数,得等价方程 [*]ln(x
2
+y
2
)=arctan[*](*) 现将方程两边求微分得 [*] 化简得xdx+ydy=xdy-ydx,即(x-y)dy=(x+y)dx, 由此解得 [*] 为求y’’,将y’满足的方程(x-y’)y’=x+y两边再对x求导,即得 (1-y’)y’+(x-y)y’’=1+y’[*] 代入y’表达式即得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/npV4777K
0
考研数学二
相关试题推荐
方程组有非零解,则k=________。
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
设A是一个五阶矩阵,A*是A的伴随矩阵,若η*,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=_________。
η1,η2是n元齐次方程组Ax=0的两个不同的解,若r(A)=n一1,则Ax=0的通解为()
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,+η*+ξn-r线性无关。
随机试题
推车式水基型灭火器首次维修以后每满()年应维修。
我国民法的基本原则包括()。
钟玲开了一家网络小店,虽然每月的收入并不稳定,但因为丈夫有固定收入,所以生活得还算滋润。只是多年来,钟玲夫妇一直处于无序理财的境况中,离富足的日子似乎还有一定的距离,需要金融理财师协助规划。经过初步沟通面谈后,你获得了以下家庭、职业与财务信息:一、案例成
税收筹划的主体不可能是()。
关于证券投资基金的表述,不正确的有()。[2014年9月证券真题]
我国基金会的组织结构必须具有哪些内容?()
不仅仅是我们的创意产业需要科幻。美国未来学家阿尔文.托夫勒曾说,一个快速变化的社会,________。中国正处于这样的快速变化中,我们需要科幻小说为我们提供海量的未来图景,让我们做好心理准备,迎接扑面而至的未来。填入画横线部分最恰当的一句是(
奥斯陆大学社会人类学家阿奇蒂说,挪威人特别__________平等,__________特权,富翁的孩子跟泥瓦匠的孩子也应该上同样的学校;他们认为自己的生活品质在全世界最高,而平等意识则是生活品质的__________构成。因此,至少在挪威人的观念里,炫富
(1)编写SELECT语句,从orders(订单)表中统计2007年各月份签订的订单数。统计结果依次包含“月份”和“订单数”两个字段,并按月份升序排序,统计结果存放在tableone表中。最后要执行SELECT语句,并将该SELECT语句存放在命令文件po
SometimeagoafriendwhohadlosthisCityjobconfessedhehadconsideredkillinghimself.Iwasappalledbutnotsurprised:
最新回复
(
0
)