首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x32-2x12-2x13-2a2x22(a<0)通过正交变换化为标准型2y12+2y22+by32。 (Ⅰ)求常数a,b的值; (Ⅱ)求正交变换矩阵; (Ⅲ)当|X|-1时,求二次型
设二次型f(x1,x2,x3)=x12+x22+x32-2x12-2x13-2a2x22(a<0)通过正交变换化为标准型2y12+2y22+by32。 (Ⅰ)求常数a,b的值; (Ⅱ)求正交变换矩阵; (Ⅲ)当|X|-1时,求二次型
admin
2021-01-28
58
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-2x
1
2
-2x
1
3
-2a2x
2
2
(a<0)通过正交变换化为标准型2y
1
2
+2y
2
2
+by
3
2
。
(Ⅰ)求常数a,b的值;
(Ⅱ)求正交变换矩阵;
(Ⅲ)当|X|-1时,求二次型的最大值。
选项
答案
(Ⅰ)令[*],则f(x
1
,x
2
,x
3
)=X
T
AX 因为二次型经过正交变化为2y
1
2
+2y
2
2
+by
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=2,λ
3
=b, 由特征值的性质得[*]解得a=-1,b=-1。 (Ⅱ)当λ
1
=λ
2
=2时,由(2E-A)X=0得ζ
1
=[*],ζ
2
=[*]; 当λ
3
=-1时,由(-E-A)X=0,得ζ
1
=[*]。 [*] (Ⅲ)因为Q为正交矩阵,所以‖X‖=1时,‖Y‖=1,当‖Y‖=1时,二次型的最大值为2。
解析
转载请注明原文地址:https://kaotiyun.com/show/2lx4777K
0
考研数学三
相关试题推荐
设函数y=1/(2x+3),则y(n)(0)=______.
设总体X~N(0,1),X1,X2,X3,X4为来自总体的简单随机样本,则服从的分布为.
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,﹣1)T为二次型的矩阵A的特征向量.(Ⅰ)求常数a,b;(Ⅱ)求正交变换X=QY,使二次型XTAX化为标准形.
设总体X的分布律为P{X=k)=(1-p)k-1p(k=1,2,…),其中p是未知参数,X1,X2,…,Xn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明厂在正交变换下的标准形为2y12+y22.
求极限
累次积分f(x2+y2)dx(R>0)化为极坐标形式的累次积分为()
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中正确的是()
设平面区域D1=t(x,y)|x2+y2≤R2},D2={(x,y)|x2+y2≤R2,x≥0},D3={(x,y)|x2+y2≤R2,x≥0,y≥0},则必有
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求
随机试题
关于百科全书,说法正确的有()。
下列属于洪脉主病的是
A.碎片状坏死和桥接坏死B.肝细胞质广泛疏松化和气球样变C.嗜酸性变和嗜酸性坏死D.大片坏死和结节状再生E.大片状坏死和肝体积快速显著缩急性普通型肝炎的主要病变是
按用途分类可将钢材分为()。
如图7—10所示电路,U=12V、UE=10V、R=0.4kΩ,则电流I等于()A。
根据《公司法》的规定,下列说法中正确的是()。
创设教学情境的方法有哪些?
简述思维过程中影响问题解决的因素。
Whomcanyoutrustthesedays?ItisaquestionposedbyDavidHalpernofCambridgeUniversity,andtheresearchersattheDowni
CharlesDickenswasafamousnineteenth-centurywriterandthesignature"CharlesDickens"israrityenoughtocommandaprice.W
最新回复
(
0
)