首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度fZ(z)= ( )
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度fZ(z)= ( )
admin
2019-02-23
63
问题
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度f
Z
(z)= ( )
选项
A、∫
-∞
+∞
f(x,z-x)dx
B、∫
-∞
+∞
f(x,x-z)dx
C、∫
-∞
+∞
f(x,z+x)dx
D、∫
-∞
+∞
f(-x,z+x)dx
答案
C
解析
记Z的分布函数为F
Z
(z),则
F
Z
(z)=P{Z≤z}=P(Y-X≤z}=
=∫
-∞
+∞
dx∫
-∞
+∞
f(x,y)dy, ①
其中D
z
={(x,y)|y-x≤z),如图3—4所示的阴影部分.
又
∫
-∞
+∞
f(x,y)dy
∫
-∞
z
(x,u+x)du. ②
将②代入①得
F
Z
(z)=∫
-∞
+∞
dx∫
-∞
z
f(x,u+x)du=∫
-∞
z
du∫
-∞
+∞
f(x,u+x)dx.
于是f
Z
(z)=
=∫
-∞
+∞
f(x,z+x)dx.因此本题选C.
转载请注明原文地址:https://kaotiyun.com/show/2n04777K
0
考研数学一
相关试题推荐
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)一f’(ξ2)=0.(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0,求证:β,β+α1,…,β+αt线性无关.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=O的解向量,求Bx=0的解空间的一个规范正交基.
设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3,设随机变量U=max{X,Y},V=min{X,Y}.求二维随机变量(U,V)的联合分布;
设二维随机变量(X,Y)的联合密度函数为f(x,y)=.判断随机变量X,Y是否相互独立;
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设矩阵A=有一个特征值为3.(1)求y;(2)求可逆矩阵P,使得(AP)T(AP)为对角矩阵.
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组.则()正确.
已知线性方程组Aχ=kβ1+β2有解,其中则k=()
随机试题
中间均衡模型
下列哪种疾病可导致前负荷增加?
肝细胞癌的肿瘤标记物是
下列哪项属于语言交流
在Word中,当选择“文件”菜单中的“另存为”命令后,输入的文件名是一个已经存在的文件,Word会()。
股权投资基金收益分配主体包括()。I.投资者Ⅱ.管理人Ⅲ.服务机构Ⅳ.自律组织Ⅴ.监管部门
银行业执业人员应当了解客户,但不得()。
历史题材作品妇孺皆悦、老少咸宜,自古以来为民众____________________。其优势在于能提供给观众和读者以民族认同、文化认同,其故事和人物往往深深根植于民族精神传统,犹如____________________的大树,每片叶子的纹理都向你诉说一
Treesareusefultomaninthreeveryimportantways:theysupplyhimwithwoodandotherproducts;theygivehimshade;andthe
Itisgenerallyacknowledgedthatyoungpeoplefrompoorersocioeconomicbackgroundstendtodolesswellinoureducationsyste
最新回复
(
0
)