首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
admin
2019-08-06
72
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=Λ。
选项
答案
(Ⅰ)因为矩阵A的各行元素之和均为3,所以有 [*] 则λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。对应λ=3的全部特征向量为kα=k(1,1,1)
T
,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,因此对应λ=0的全部特征向量为 k
1
α
1
+k
2
α
2
=k
1
(一1,2,一1)
T
+k
2
(0,一1,1)
T
,其中k
1
,k
2
是不全为零的常数。 (Ⅱ)因为A是实对称矩阵,所以α与α
1
,α
2
正交,只需将α
1
与α
2
正交化。 由施密特正交化法,取 β
1
=α
1
,β
2
=α
2
一[*] 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
—1
=Q
T
,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/35J4777K
0
考研数学三
相关试题推荐
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)-f(1)].若求:f(x)
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈(a,b),使得f(c)=0;
将编号为1,2,3的三本书随意排列在书架上,求至少有一本书从左到右排列的序号与它的编号相同的概率.
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
求幂级数
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,X2n(n>2).令的数学期望.
设随机变量(X,Y)在区域D={(x,y,)|0≤x≤2,0≤y≤1)上服从均匀分布,令(1)求(U,V)的联合分布;(2)求ρUV.
设对任意的参数λ,讨论级数的敛散性,并证明你的结论.
设商品需求函数为求收益R对价格P的弹性.
设D是xOy平面上以(1,1),(-1,1),(-1,一1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(xy+cosxsiny)dσ等于().
随机试题
急性心肌梗死最早出现的症状是
与成瘾性有关的阿片受体亚型是:
软骨肉瘤的特殊类型不包括
监理大纲的主要内容是( )。
法律规定合同中同时定有违约金与定金条款的,当事人既约定违约金,又约定定金的,一方违约时,对方()。
已知销售量的敏感系数为2,为了确保下年度企业不亏损,销售量下降的最大幅度为()。
下列各项中,事业单位应当确认为单位管理费用的有()。
李工程师:一项权威性的调查数据显示,在医疗技术和设施最先进的美国,婴儿最低死亡率在世界上只占第17位,这使我得出结论,先进的医疗技术和设施,对于人类生命和健康所起的保护作用,对成人要比对婴儿显著得多。张研究员:我不能同意您的论证。事实上,一个国家所具有的先
下列“盛世”出现于唐代的是:
简述伪证罪与诬告陷害罪的区别。
最新回复
(
0
)