首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aii)n×n,且A2-3A+2E=0,证明:矩阵A可相似对角化.
设A=(aii)n×n,且A2-3A+2E=0,证明:矩阵A可相似对角化.
admin
2020-06-05
33
问题
设A=(a
ii
)
n×n
,且A
2
-3A+2E=0,证明:矩阵A可相似对角化.
选项
答案
设λ为矩阵A的特征值,p为对应的特征向量.那么由已知条件A
2
-3A+2E=0, 得(A
2
-3A+2E)p=0,即λ
2
-3λ+2=0,故λ
1
=1或2. 又由A
2
-3A+2E=(A-2E)(A-E)=0,得 R(A-2E)+R(A-E)≤n 又 R(A-2E)+R(A-E)=R(2E-A)+r(A-E)≥r(2E+A+A-E)=R(E)=n 故 R(A-2E)+R(A-E)=n 由方程组(A-2E)x=0的线性无关的解的个数为n-R(A-2E),方程组(A-E)x=0的线性无关的解的个数为n-R(A-E).因此A的线性无关的特征向量的个数为 n-R(2E-A)+n-R(A-E)=2n-n=n 故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Nv4777K
0
考研数学一
相关试题推荐
二次型f(x1,x2,x3)=(x1—x2)2+4x2x3的矩阵为___________.
设y=y(x)由y=tan(x+y)所确定,试求y’,y".
已知二次型f(x1,x2,x3)=x12+2x22+bx32一4x1x2+4x1x3+2ax2x3(a>0)经正交变换(x1,x2,x3)T=P(y1,y2,y3)T化成了标准形f=2y12+2y22—7y32,求a、b的值和正交矩阵P.
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
已知向量的始点A(4,0,5),则B的坐标为()
设A,B是n阶矩阵,则C=的伴随矩阵是
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
随机试题
油田生产单位要定期进行安全检查,基层队每()一次。
依照《行政复议法》的规定,对于行政行为不服的,可以自知道该具体行政行为之日起()内向复议机关提出复议申请。
下列选项中,属于无芽胞厌氧菌感染特征的是
高血压危象药物治疗可首选
中国收货人甲公司从国外购货,取得的提单上载明“凭指示”的字样,承运人为中国乙公司。当甲公司凭正本提单到港口提货时,被乙公司告知货物已不在其手中。后甲公司在中国法院对乙公司提起索赔诉讼。乙公司在下列哪种情形下不可免除交货责任?()
按支出用途分类,我国的财政支出共有()项,主要包括基本建设支出等。
在系统中设置单位信息时,如果企业类型选择了工业模式,则()。
(36)havegreetedQueenElizabethⅡassheappearedoutside(37)inapinksuitandhatonher80thbirthday.And(38)workingg
June15DearSir,Yourshipmentoftwelvethousand"Smart"watcheswasreceivedbyourcompanythismorning.However,wewi
Directions:Forthispart,youareallowed30minutestowriteacompositiononthetopic:DoesHeroismStillWork?Youshouldw
最新回复
(
0
)