首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶矩阵A经过若干次初等变换化为矩阵B,则( ).
n阶矩阵A经过若干次初等变换化为矩阵B,则( ).
admin
2017-08-31
33
问题
n阶矩阵A经过若干次初等变换化为矩阵B,则( ).
选项
A、|A|=|B|
B、| A|≠|B|
C、若|A|=0则|B|=0
D、若|A|>0则|B|>0
答案
C
解析
因为A经过若干次初等变换化为B,所以存在初等矩阵P
1
,…,P
s
,Q
1
,…,Q
t
,使得B=P
s
…P
1
AQ
1
…Q
t
,而P
1
,…,Q
1
,…,Q
t
都是可逆矩阵,所以r(A)=r(B),若|A|=0,且r(A)<n,则r(B)<n,即|B|=0,选(C).
转载请注明原文地址:https://kaotiyun.com/show/3Tr4777K
0
考研数学一
相关试题推荐
(1)的定义域_______;(2)设则y=f(x2)+f(ex)的定义域是_______;(3)设函数的定义域是[-4,-π]∪[0,π],则g(x)的表达式为g(x)______。
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
微分方程y’’+4y=cos2x的通解为y=__________.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
证明方程lnx=x-e在(1,e2)内必有实根.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,-3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
求极限
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ.
设对一切的x,有f(x+1)=—2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性。
随机试题
按功能分类,主动脉属于
肾挫伤的病理变化是()
全面风险管理模式体现的先进的风险管理理念和方法包括()。
导游人员带团在景区景点游览时,应尽可能做到“游速旅缓”。()
元素X、Y、Z原子序数之和为36,X、Y在同一周期,X+与Z2-具有相同的核外电子层结构。下列推测不正确的是()。
生产关系是
WhydoesPeterDruckercontinuetoenjoysuchahighreputation?Partoftheanswerliesinpeople’smixedemotionsaboutmanage
Thequestion"Areyouamanoramouse?"reallymeanstoaskwhetheryoubelieveThewritergivestheexampleofLennyBrownto
Accordingtothenews,whyhastheseniorpoliceofficerresigned?
A、Hehadtoworkovertime.B、Hiscarranoutofgas.C、Hewasheldupintraffic.D、Hehadatrafficaccident.C
最新回复
(
0
)