首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设有齐次线性方程组 试问a取何值时,该方程组有非零解?并求出其通解.
[2004年] 设有齐次线性方程组 试问a取何值时,该方程组有非零解?并求出其通解.
admin
2019-05-10
60
问题
[2004年] 设有齐次线性方程组
试问a取何值时,该方程组有非零解?并求出其通解.
选项
答案
确定参数a的取值使所给方程组有非零解,可用两法确定.一是用初等行变换法将其系数矩阵化为阶梯形,由其秩小于3,确定a的取值;另一种方法就是由其系数行列式为零确定之,这时可得到a的两个取值,对每一个取值都要讨论. 解一 方程组的系数矩阵A为列和相等的行列式,因而 [*] 当∣A∣=0即a=0或a=一10时,方程组有非零解. 当a=0时,A→[*],易求得其通解为 X=k
1
[一1,1,0,0]
T
+k
2
[一1,0,1,0]
T
+k
3
[一1,0,0,1]
T
. 当a=一10时,[*] 因而秩(A)=3<n=4,方程组有非零解.基础解系只含一个解向量α=[1,2,3,4]
T
,其通解为 X一kα=k[1,2,3,4]
T
(是为任意常数). 解二 用初等行变换解之.对其系数矩阵施行初等行变换,得到 [*] 当a=0时,秩(A)=1<4=n,方程组有非零解,其一个基础解系含r=n-秩(A)=4—1=3个解向量: α
1
=[一1,1,0,0]
T
, α
2
=[一1,0,1,0]
T
, α
3
=[一1,0,0,1]
T
. 方程的通解为X=k
1
α
1
+k
2
α
2
+k
3
α
3
,k
1
,k
2
,k
3
为任意常数. 当a≠0时,有A
1
→[*] 当a=一10时,有A
1
→[*] 秩(A)=秩(A
1
)=3,一个基础解系只含一个解向量α=[1,2,3,4]
T
,方程组的通解为X=kα(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/3VV4777K
0
考研数学二
相关试题推荐
若f(-χ)=-f(χ),且在(0,+∞)内f′(χ)>0,f〞(χ)>0,则在(-∞,0)内().
求不定积分
设f(χ)在(-∞,+∞)内可微,且f(0)=0,又f′(lnχ)=求f(χ)的表达式.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设z=z(χ,y)是由f(y-χ,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
设f(χ)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(χ)|≤k,证明:当χ≥0时,有|f(χ)|≤(eaχ-1).
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
如图3—1,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
随机试题
黏弹补充疗法应用1%透明质酸钠做关节腔内注射,对改善颞下颌关节紊乱病有所帮助的类型是
受理申请医师注册的卫生行政部门对不符合条件不予注册的,应当自收到申请之日起多少日内给予申请人书面答复,并说明理由()
根据评价对象的不同,土地分等定级可分为()分等定级类型。
建设方案研究与比选中,采用高新技术需要符合的要求有()
设备制造实施过程质量监理的重点是()。
深圳市盛润公司主管财务会计工作的副总经理王某召集财务部部长李某及相关人员开会,重点研究年度财务决算的相关事宜,同时财务部汇报几项工作,由领导决定。以下是会议期间的部分发言:王某:受金融危机的影响,公司今年的内销及外销均大幅度下滑,亏损已成定局。财务部正在
对误机(车、船)事故的处理,应做到()
读图,图中L为晨昏线。完成问题。若此时雅加达正午物体影子朝北,则()。
Wecanlearnfromthetextthathumanbeingshaveahistoryof______.VideogameswouldhavebeenrecommendedbySocratesdue
设顺序表的长度为n。下列算法中,最坏情况下比较次数等于n(n-1)/2的是()
最新回复
(
0
)