首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
admin
2021-11-15
42
问题
设α
1
,α
2
,α
3
为四维列向量组,α
1
,α
2
线性无关,α
3
=3α
1
+2α
2
,A=(α
1
,α
2
,α
3
),求AX=0的一个基础解系.
选项
答案
方法一 AX=0[*]x
1
α
1
+x
2
α
2
+x
3
α
3
=0, 由α
3
=3α
1
+2α
2
可得(x
1
+3x
3
)α
1
+(x
2
+2x
3
)α
2
=0, 因为α
1
,α
2
线性无关,因此[*] 方法二 由r(A)=2可知AX=0的基础解系含有一个线性无关的解向量, 而3α
1
+2α
2
-α
3
=0,因此ξ=[*]为AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Yy4777K
0
考研数学二
相关试题推荐
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0﹥0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
设.求(I)(II)的基础解系。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(II)BX=0的基础解系。
设向量组a1,a2,...,an-1为n维线性无关的列向量组,且与非零向量Β1,Β2正交。证明:Β1,Β2线性相关。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设三角形三边的长分别为a,b,c,此三角形的面积为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2—2α3,(α2一α1),α1—3α2+2α3中,是对应齐次线性方程组Ax=0解向量的共有()
随机试题
A、 B、 C、 D、 B
A.医乃仁术B.疏五过论C.勤求古训,博采众方D.医家必须具备精湛的医术和高尚的医德E.“精究方术,爱人知人”孙思邈所著的《备急千金要方》中主张()
某住宅小区因设计不当,路灯光线强烈刺眼,且照进住宅室内,此类现象属于光污染中的()。
潘某、苗某、任某、顾某四人合资兴办了豪俊进出口贸易有限责任公司(下称“豪俊公司”),注册资本为3000万元人民币,潘某占其中的50%。苗某占30%,任某占10%,顾某占10%。公司在成立后,召开了第一次股东会会议。对公司的管理和经营活动作出决定和规划。2
注册会计师王豪、李民对ABC股份有限公司1997年度会计报表出具了审计报告,同时又对其1998年度的盈利预测出具了审核报告。请简要回答这两份报告存在哪些主要区别?
按照《合同法》和《消费者权益保护法》的规定,在一般情况下,合同双方当事人在合同约定中没有明确是定金的,应视为()。
洲际导弹通常指射程大于8000公里的远程弹道式导弹。目前,中国研制的洲际弹道导弹主要是什么系列的?
在C++语言程序中,对象之间的相互通信通过
【B1】【B9】
VisitorstoBritainmayfindthebestplacetosamplelocalcultureisinatraditionalpub.Butthesefriendlyhostelriescanb
最新回复
(
0
)