首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
admin
2021-11-15
40
问题
设α
1
,α
2
,α
3
为四维列向量组,α
1
,α
2
线性无关,α
3
=3α
1
+2α
2
,A=(α
1
,α
2
,α
3
),求AX=0的一个基础解系.
选项
答案
方法一 AX=0[*]x
1
α
1
+x
2
α
2
+x
3
α
3
=0, 由α
3
=3α
1
+2α
2
可得(x
1
+3x
3
)α
1
+(x
2
+2x
3
)α
2
=0, 因为α
1
,α
2
线性无关,因此[*] 方法二 由r(A)=2可知AX=0的基础解系含有一个线性无关的解向量, 而3α
1
+2α
2
-α
3
=0,因此ξ=[*]为AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Yy4777K
0
考研数学二
相关试题推荐
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设的一个基础解系为,写出的通解并说明理由。
证明线性方程组有解的充分必要条件是方程组是同解方程组。
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
随机试题
己知某R进制数为2019,则R的取值不可能为______________。
急性腹膜炎的标志性体征是
男性,5岁。持续发热15天,体温39~39.5℃,伴腹泻每日3~5次。体检:神萎,心率72次/分,肝右肋下2cm,脾肋下1.5cm。查血:WBC3.0×109/L,中性粒细胞60%,淋巴细胞40%,嗜酸性粒细胞0,ALT200U/L,血清抗一HBs阳性。该
审计关系人是由()组成的。
某市中级人民法院利用网络视频技术让不便于出庭的证人远程作证,这体现了()。
某学校学生排成一个方阵,最外层的人数是60人,请问这个方阵共有学生多少人?()
12-13世纪发展欧洲复调音乐的“巴黎圣母院乐派”中仅有的两位留下名字的作曲家为()。
(湖南大学2015)香港采用的汇率制度是()。
某Word文档中有一个5行×4列的表格,如果要将另外一个文本文件中的5行文字拷贝到该表格中,并且使其正好成为该表格一列的内容,最优的操作方法是
AmericanDreamsThereisacommonresponsetoAmericaamongforeignwriters:theU.S.isalandofextremeswherethebesto
最新回复
(
0
)