首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
admin
2019-09-29
74
问题
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解,令r(B)=r,且ζ
1
,ζ
2
,...,ζ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ζ
1
,ζ
2
,...,ζ
n-r
,η
0
线性无关,若ζ
1
,ζ
2
,...,ζ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,...,k
n-r
,k
0
,使得k
1
ζ
1
+k
2
ζ
2
+...+k
n-r
ζ
n-r
=0,因为ζ
1
,ζ
2
,...,ζ
n-r
线性无关,所以k
1
=k
2
=...=k
n-r
1,ζ
2
,...,ζ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ζ
1
,ζ
2
,...,ζ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ζ
1
,ζ
2
,...,ζ
n-r
,η
0
线性无关且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解。
解析
转载请注明原文地址:https://kaotiyun.com/show/kGA4777K
0
考研数学二
相关试题推荐
设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的()条件.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
设f(χ)连续,且f′(0)>0,则存在δ>0,使得().
要使都是线性方程组Ax=0的解,只要系数矩阵A为()
设A为三阶方阵,A*;为A的伴随矩阵,,则|4A一(3A*)一1|=()
设A是三阶矩阵,且|A|=4,则=_______.
用变量代换x=sint将方程化为y关于t的方程,并求微分方程的通解.
已知线性方程组讨论参数p,t取何值时,方程组有解、无解;当有解时,试用其导出组的基础解系表示通解.
设D=,则A31+A32+A33=_______
随机试题
女性,35岁,反复发作右上腹痛伴寒战、发热4年,3天前再次出现同样症状。查体:体温40.5℃,脉搏130次/分,血压62/46mmHg,嗜睡,巩膜黄染,右上腹压痛及肌紧张,肝区叩痛明显。对该患者最可能的诊断是
同时麻醉颊神经、舌神经和下牙槽神经的穿刺部位是()
药品经营企业发现药品群体不良事件应当()
期货交易所会员的保证金不足时,期货交易所应当立即将该会员的期货合约强行平仓,以防风险。()
下列事项中,最终不会导致所有者权益变动的有()。
你单位组织一个新农业科技活动,邻乡镇的都跑来看,导致本乡镇秩序混乱,本乡镇群众不满,你怎么办?
已知关于x的方程x2一(n+1)x+2n一1=0的两根为整数,则整数n是().
在会议开始前,市场部助理小王希望在大屏幕投影上向与会者自动播放本次会议所传递的办公理念,按照如下要求完成该演示文稿的制作:为上述SmartArt智能图示设置由幻灯片中心进行“缩放”的进入动画效果,并要求上一动画开始之后自动、逐个展示SmartArt中的
近日,世界上最美丽的蝴蝶———光明女神蝶亮相武汉国际会展中心,着时让当地市民开了回(1)。据了解,这只光明女神蝶,曾在美国索斯比拍卖会上拍价达4万美元,(2)人民币约36万元,并载入了“吉尼斯世界”(3)。这种蝴蝶产于巴西、秘鲁等国,因数量极其稀少,
Accordingtogovernmentstatistics,menofallsocialclassesinBritainvisitpubsquiteoften,【21】______thekindofpubth
最新回复
(
0
)