首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
admin
2019-09-29
49
问题
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解,令r(B)=r,且ζ
1
,ζ
2
,...,ζ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ζ
1
,ζ
2
,...,ζ
n-r
,η
0
线性无关,若ζ
1
,ζ
2
,...,ζ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,...,k
n-r
,k
0
,使得k
1
ζ
1
+k
2
ζ
2
+...+k
n-r
ζ
n-r
=0,因为ζ
1
,ζ
2
,...,ζ
n-r
线性无关,所以k
1
=k
2
=...=k
n-r
1,ζ
2
,...,ζ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ζ
1
,ζ
2
,...,ζ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ζ
1
,ζ
2
,...,ζ
n-r
,η
0
线性无关且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解。
解析
转载请注明原文地址:https://kaotiyun.com/show/kGA4777K
0
考研数学二
相关试题推荐
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是()
已知A,B,A+B,A-1+B-1均为n阶可逆阵,则(A-1+B-1)-1等于()
设A=,其中与对角矩阵相似的有()
设A为3阶非零矩阵,且满足以aih=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为()
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则()
n阶矩阵A经过若干次初等变换化为矩阵B,则().
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
设A是四阶矩阵,A*是A的伴随矩阵,若线性方程Ax=0的基础解系中只有2个向量,则A*的秩是()
设γ1,γ2,…,γt和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
随机试题
驾驶机动车汇入车流时不能影响其他机动车通行。
胰岛素的生理作用是
患者,女性,47岁,近来发现乳头有少量血性液体流出,但乳房内并无明显肿块触及,亦无痛。可考虑
甲公司在乙公司有900万债权。2000年4月26日,乙公司决议并入丙公司。决议的第2天、第10天和第20天,乙公司在报纸上进行了公告。甲公司一直没有收到乙公司的有关兼并的通知。同年7月2日,甲公司才看到公告。看到公告后,甲公司()。
下列各项关于企业采购环节内部控制措施的表述中,错误的有()。(2016年)
(2014年单选44)下列关于《大清民律草案》与《中华民国民法》编纂体例的表述,正确的是()。
Directions:Supposeyoufoundaloopofkeysinthelibrary.Writeanoticeto1)makeitknown,and2)askforclai
有一篇50页的文稿,分4人去录入,最后要把它们放在一个文档中,正确的做法是()。
以下程序拟实现计算sum=1+1/2+1/3+…+1/50。 #include<stdio.h> main() {inti,doublesum; sum=1.0; i=1; do {i++;sum+=1/i;
HowSATSWorkTestsareafactoflifethroughoutourschoolcareers,butoneofthemostimportant,and,tosome,thescari
最新回复
(
0
)