首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求解微分方程的初值问题:=(1-y2)tanx,y(0)=2.
求解微分方程的初值问题:=(1-y2)tanx,y(0)=2.
admin
2022-10-13
54
问题
求解微分方程的初值问题:
=(1-y
2
)tanx,y(0)=2.
选项
答案
因微分方程是可分离变量的,故有 [*] 积分后得[*]+lncos
2
x=lnC
1
,因题给出的初值条件是x=0时y=2,则根据常微分方程初值问题解的存在唯一性定理,不妨设y>1,于是原微分方程在x=0附近存在通解 [*] 其中C是不为零的任意常数,把x=0,y=2代入上式可得C=3. 因此所求的特解为 (y+1)cos
2
x=3(y-1),即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3bC4777K
0
考研数学三
相关试题推荐
函数u=f(x+y,xy),则=________。
e一2.因x→0时,arcsinx~x,故
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=,证明:F(x)在(a,+∞)内单调增加.
[0,2]
已知曲线与曲线在点(x0,y0)处有公共切线.求(1)常数a及切点(x0,y0);(2)两曲线与x轴围成的平面图形绕x轴旋转所得旋转体体积Vx.
(I)求y"一7y’+12y=x满足初始条件的特解;
证明:=1.
求下列曲线所围成的图形的面积:(1)x2+3y2=6y与直线y=x(两部分都要计算);(2)y=1/x与直线y=x及x=2;(3)y=lnx,y轴与直线y=lna,y=lnb(b>a>0);(5)x=2y-y2与y=2+x;(6)y=2x与直线
设f(x)=∫0xg(t)dt.(1)证明y=f(x)为奇函数,并求曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及y轴所围成图形的面积.
设f(x)=arctanx2,则=________.
随机试题
小儿病危重,其食指可显现为
烧伤患者,高热灼手,汗多气粗,口渴头痛烦躁不安,舌红绛苔黄,脉洪数。其证型是
关于犯罪形态,下列哪种说法是正确的?
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f’(x)>0,f’’(x)>0,则在(-∞,0)内必有()。
如果当前的证券价格不仅反映了历史价格信息和所有公开的价格信息,该市场属于()。
对于长文档,使用键盘快速移动光标至文件首的操作是()。
Whatrhetoricdeviceisusedinthesentence"Manyhandsmakelightwork"?
材料 近日,特拉维夫大学宣布该学校实验室3D打印出了一颗“心脏”,该心脏不仅具有外形,还有细胞、血管和其他支撑结构,甚至可以像心脏一样收缩,但长度只有2.5厘米。该实验团队负责人说:“与过去相比,这项研究成果的突破点在于,这不仅是一个外观打印的心脏,而
某班级53名学生的物理成绩平均分为83分,标准差为7分,测验的信度为0.51。若小叶考试成绩为81分,那么在0.05的显著水平上,其真分数应该介于什么范围?()
RocketRenaissanceTheEarofPrivateSpaceflightIsAbouttoStartBackgroundTwoyearsago,peoplewitnessedthefirstspa
最新回复
(
0
)