首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫02f(x)dx=f(2)+f(3)。 (Ⅰ)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫02f(x)dx=f(2)+f(3)。 (Ⅰ)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2020-03-10
57
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(Ⅰ)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(Ⅰ)设F(x)= ∫
0
x
f(t)dt,x∈[0,3] 。由于f(x)在[0,3]上连续,从而可知F(x)在[0,3]上可导。由拉格朗日中值定理可知F(2) — F(0)=F’(η)(2—0),η∈(0,2),所以∫
0
2
f(x)dx=2f(η),又因为2f (0)=∫
0
2
f(x)dx,所以f(η)=f(0)。 (Ⅱ)因f(2)+f(3)=2f(0),即[*]= f(0),又因为f(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3]使得f(η
1
)=f(0)。 因f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η),由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)= 0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(0)=f(η
1
),由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 又因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/byD4777K
0
考研数学三
相关试题推荐
设cosx-1=xsina(x),其中|a(x)|<π/2,则当x→0时,a(x)是
设p(x)=a+bx+cx+dx2当x→0时,若p(x)一tanx是比x3高阶的无穷小,则下列结论中错误的是
设A和B是任意两个概率不为零的互不相容事件,则下列结论肯定正确的是()
设,则I,J,K的大小关系为
设函数f(x),g(x)具有二阶导数,且g"(x)
试求函数y=arctanx在x=0处的各阶导数。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关。
设函数f(x,y)连续,则二次积分f(x,y)dy等于()
求dσ,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图1-4-2所示)。
n为自然数,证明:
随机试题
Decadesofscientificresearchshowthatstressandanxietyareprevalentproblemsatwork,contributingtodeficitsinemployee
一多发性血栓形成患者,血浆PT、APTT延长,血小板数量正常,凝血因子Ⅶ、Ⅷ活性正常。如检测结果为阳性,应进一步检测
下列不是热性哮喘的症状特征是
下列对流水施工的叙述正确的是()。
以下是商业银行被动负债的方式的选项有()。
具有稳定经济功能,被称为“自动稳定器”的税种是()。
注册商标没有正当理由连续3年不使用的,任何单位或者个人都可以向商标局申请撤销该注册商标。()
因税收返还退回的增值税,附加的城市维护建设税不予退还。()
PrecedenceDiagrammingMethod(PDM)isamethodusedinactivitysequencing.Therearefourtypesofdependenciesorprecedencerel
Whenyougoonasoloadventure,youlearntoexpectthe【C1】_______.However,travelers【C2】______anticipatetheunexpectedcould
最新回复
(
0
)