首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关。当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关。当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2019-05-14
58
问题
设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时,α
1
,α
2
,α
3
,α
4
线性相关。当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出。
选项
答案
记A=(α
1
,α
2
,α
3
,α
4
),则 |A|=[*]=(a+10)a
3
, 因此当a=0或a=-10时,|A|=0,即α
1
,α
2
,α
3
,α
4
线性相关。 当a=0时,α
1
为α
1
,α
2
,α
3
,α
4
的一个极大 线性无关组且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
。 当a=-10时,对A作初等行变换,即 [*] =(β
1
,β
2
,β
3
,β
4
)。 由于β
2
,β
3
,β
4
是β
1
,β
2
,β
3
,β
4
的一个极大线性无关组且β
1
=-β
2
-β
3
-β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组且α
1
=-α
2
-α
3
-α
4
。
解析
转载请注明原文地址:https://kaotiyun.com/show/3d04777K
0
考研数学一
相关试题推荐
设A是n阶实反对称矩阵,x,y是实n维列向量,满足Ax=y,证明x与y正交.
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=-0.1,P{x≤0|Y≥2}=5/8,记Z=X+Y.求:Z的概率分布;
设A是m×n实矩阵,r(A)=n,证明ATA是正定矩阵.
在测量反应时间中假设反应时间服从正态分布,一心理学家估计的标准差是0.05秒.为了以95%的置信度使他对平均反应时间的估计误差不超过0.01秒,应取的样本容量n为多少?
(1989年)证明方程在区间(0,+∞)内有且仅有两个不同实根.
(2018年)已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.若f(x)是周期为T的函数,证明:方程存在唯一的以T为周期的解.
(1991年)若连续函数f(x)满足关系式则f(x)等于
设f(u)为连续函数,D是由y=1,x2=y2=1及y=0所围成的平面闭域,则=_________。
随机试题
A.免疫反应B.过敏反应C.趋化游走作用D.血凝作用大单核细胞()
如果注册会计师采用以控制测试为主的方式进行存货监盘,并准备信赖被审计单位存货盘点的控制措施与程序,则其实施的绝大部分审计程序将限于()。
A.宣肺B.润肺C.清肺D.敛肺枇杷叶止咳平喘的机理是
女性,45岁。咳嗽,痰血3个月,伴气急,自闻吸气时有“鸟鸣声”,仰卧位时尤著,故近1个月来夜间多取半卧位。高电压胸片见隆突上约3cm处气管内软组织影,该患者出现呼吸困难是属于
临界相对湿度
下列各项中,属于附期限的法律行为的是()。
某航空公司占用林地4万平方米用于办公楼的建设,另占用经济林地1万平方米用于建设飞机场跑道和停机坪,所占耕地适用的定额税率为20元/平方米。该航空公司应缴纳耕地占用税()。
在党的领导、人民当家作主、依法治国的有机统一体中,三者关系表述错误的是()。
若两个变量的平均水平接近,平均差越大的变量,其()
ContextDefinition:Ourenvironment,particularlyitssignificanceduring【D1】______.Twotypesofcultures:A.Highcontextcult
最新回复
(
0
)