首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
admin
2019-01-23
39
问题
设A是三阶实对称矩阵,满足A
3
=2A
2
+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
选项
答案
k>2
解析
根据题设条件,则有A
3
一2A
2
一5A+6E=O。设A有特征值λ,则λ满足条件λ
3
一2λ
2
一5λ+6=0,将其因式分解可得
λ
3
一2λ
2
一5λ+6=(λ一1)(λ+2)(λ一3)=0,
因此可知矩阵A的特征值分别为l,一2,3,故kE+A的特征值分别为k+1,k一2,k+3,且当k>2时,
kE+A的特征值均为正数,故k>2。
转载请注明原文地址:https://kaotiyun.com/show/3mP4777K
0
考研数学三
相关试题推荐
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
已知矩阵A=与对角矩阵相似,求An.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
已知A相似于B,即存在可逆阵P,使得P—1AP=B.求证:存在可逆阵Q,使得Q—1AQ=B的充分必要条件是存在与A可交换的可逆阵C,使得Q=CP.
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22—2x32+2x1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为一12.(1)求a,b的值.(2)利用正交变换将二次型f化为标准形,并写出所用
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
随机试题
预激综合征合并快速房颤时,静脉注射下列哪种药物是错误的
A.葛根黄苓黄连汤B.五积散C.大柴胡汤D.石膏汤主治外感风寒,内伤生冷证的方剂是
下列各项,关于肺癌的中医病因论述,错误的是()
在我国,上级政府按照特定目的将其财政收入转作下级政府财政收入来源的补助形式,称为()。
州长在其任职的三年里经常被指控对女性有性别歧视的态度。然而,他已经在他的管理层的19个高层空缺职位中任用了5名妇女,她们中的所有人仍在服务,这表明州长并不是一名性别歧视者。下列哪一项如果正确,最反对上面的结论?()
业务经营安全性原则包括()。
小张,小王,小李,小马,小陈,小刘,小白,小赵,小孙,小杨,小周,小郑住在一个六层楼房里。每层有两个公寓。每个公寓最多住两个人,一些公寓也许是空的。(1)小王和他的舍友住的比小赵和他的舍友小白高两层。(2)小张一个人住,比小刘低三层并且
如果有定义LOCALdata,data的初值是( )。
DearMr.Ridge,Itwasgoodofyou(147)suchkindofJointOperationandIdeeplyappreciateit.However,IfeelthatImustch
Growingolderisinevitable.However,asyougetold,careinoldagebecomesmoreimportant.Manypeoplewronglybelievethatw
最新回复
(
0
)