首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
admin
2019-01-23
67
问题
设A是三阶实对称矩阵,满足A
3
=2A
2
+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
选项
答案
k>2
解析
根据题设条件,则有A
3
一2A
2
一5A+6E=O。设A有特征值λ,则λ满足条件λ
3
一2λ
2
一5λ+6=0,将其因式分解可得
λ
3
一2λ
2
一5λ+6=(λ一1)(λ+2)(λ一3)=0,
因此可知矩阵A的特征值分别为l,一2,3,故kE+A的特征值分别为k+1,k一2,k+3,且当k>2时,
kE+A的特征值均为正数,故k>2。
转载请注明原文地址:https://kaotiyun.com/show/3mP4777K
0
考研数学三
相关试题推荐
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
已知α1,α2,α3,α4是3维列向量,矩阵A=[α1,α2,2α3—α4+α2],B=[α3,α2,α1],C=[α1+2α2,2α2+3α4,α4+3α1],若|B|=—5,|C|=40,则|A|=__________.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).(1)求A的特征值.(2)证明:A不相似于对角矩阵.(3)证明:|E+A|=1.(4)若方阵B满足AB=BA,证明:|A+B|=|B|.
设A为m×n矩阵,B是n×m矩阵,证明:AB和BA有相同的非零特征值.
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
设三阶实对称矩阵A的特征值是1,2,3.A的属于特征值1,2的特征向量分别是α1=[一1,一1,1]T,α2=[1,一2,一1]T.(1)求A的属于特征值3的特征向量.(2)求矩阵A.
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
已知三元二次型xTAx经正交变换化为2y12—y22—y32,又知A*α=α,其中α=(1,1,一1)T,求此二次型的表达式.
随机试题
网上书店运营的主要内容是什么?
鸟氨酸脱羧生成的产物是
患者,男,50岁。既往高血压病史10年。晚上参加宴会,次日清晨发现已死亡,床上有少量咖啡色液体,左侧腰腹部有大片青紫斑。患者死亡原因可能是
关于土桩和灰土桩的说法,正确的有()。
LIPITORABOUTLIPITORLipitorisaprescriptionmedicine.Alongwithdietandexercise,itlowers"bad"cholesterol(胆固醇)iny
上午:下午:夜晚
在北美放射学会上发布的一项研究认为,每周食用一次烤鱼将改善人们的大脑健康状况,并降低发展为轻度认知功能损害和阿尔茨海默氏症(Alzheimer,最常见的老年痴呆症)的风险。对可能引起阿尔茨海默氏症的脑部区域所做的核磁共振成像(MRI)显示,每周至少食用一次
标志着中国共产党指导思想上拨乱反正的胜利完成的是()
在采用页式存储管理方案的系统中,可采用下列哪些方法管理空闲物理内存?()
假定有如下的窗体事件过程:PrivateSubForm_Click()aS=”MicrosoftInteger”:bS=Right(aS,5)c$=Mid(aS,1,9):MsgBoxaS,34,b$,c$,5
最新回复
(
0
)