首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
admin
2017-07-26
30
问题
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α
1
=(a一1,1,1)
T
,α
2
=(4,一a,1)
T
,α
3
=(a,2,6)
T
,A
*
是A的伴随矩阵,试求齐次方程组(A
*
+E)x=0的基础解系。
选项
答案
因为实对称矩阵不同特征值的特征向量相互正交,故 [*] 由|A|=一2,知A
*
的特征值是一2,一1,2.那么A
*
+E的特征值是一1,0,3. 又因A,A
*
,A
*
+E有相同的特征向量.于是 (A
*
+E) α
2
=0α
2
=0. 所以α
2
=(4,一1,1)
T
是齐次方程组(A
*
+E)x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/FyH4777K
0
考研数学三
相关试题推荐
设随机变量(X,Y)的联合概率密度为讨论随机变量X与Y的相关性和独立性.
设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(x,y)10≤Y≤x≤2一y}.试求:x+y的概率密度;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A的特征向量;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A的特征值;
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,当α=3时,证明α1,α2,α3,α4可表示任一个4维列向量.
证明下列命题:设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=f(1)=0,f’’(x)0(x∈(0,1)).
已知义矩阵A和B相似,A*是A的伴随矩阵,则|A*+3E|=___________.
与曲线(y一2)2=x相切,且与曲线在点(1,3)处的切线垂直,则此直线方程为_________.
向量组α1,α2,…,αm线性无关的充分必要条件是().
随机试题
沪深300股指期货合约的最低交易保证金是合约价值的()。
“辛凉轻剂”指的是
室壁瘤的超声表现特点包括
对临床治疗方案进行药物经济学评价的主要目的在于
关于显影的叙述,错误的是
属于氮苷类化合物的是属于硫苷类化合物的是
某水泥有限公司拟开发利用古圣砂岩矿资源,年产872179t砂岩。项目矿界范围面积0.44km2,分为北东矿块和南西矿块。高速公路所在地段位于矿区中部,高速公路两侧边界距露采边界距离各为50m。距厂区破碎站北侧约100m为古圣移民住宅区,总计约100户;距
下列关于信用评级定性和定性分析方法的说法,正确的有()。
有人问我怎样才能不浪费时间,我说忘掉时间才是真正的不浪费时间。如果做一件事情专注到忘掉时间,就意味着全心投入。只要这件事情本身是有意义的,就一定会有所成就。凡是我们每天赶时间的事情,大部分是没有意义浪费时间的事情。对以上文字理解正确的一项是:
设f(x)连续,且=2,则=_____________.
最新回复
(
0
)