首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
admin
2017-07-26
62
问题
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α
1
=(a一1,1,1)
T
,α
2
=(4,一a,1)
T
,α
3
=(a,2,6)
T
,A
*
是A的伴随矩阵,试求齐次方程组(A
*
+E)x=0的基础解系。
选项
答案
因为实对称矩阵不同特征值的特征向量相互正交,故 [*] 由|A|=一2,知A
*
的特征值是一2,一1,2.那么A
*
+E的特征值是一1,0,3. 又因A,A
*
,A
*
+E有相同的特征向量.于是 (A
*
+E) α
2
=0α
2
=0. 所以α
2
=(4,一1,1)
T
是齐次方程组(A
*
+E)x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/FyH4777K
0
考研数学三
相关试题推荐
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
设随机变量(X,Y)的联合概率密度为讨论随机变量X与Y的相关性和独立性.
设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(x,y)10≤Y≤x≤2一y}.试求:P{Y≤0.2|X=1.5}.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A*一6E的秩.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A的特征向量;
求微分方程(x一2xy—y2)y’+y2=0,y(0)=1的特解.
证明下列命题:设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=f(1)=0,f’’(x)0(x∈(0,1)).
微分方程2x2y’=(x+y)2满足定解条件y(1)=1的特解是__________.
与曲线(y一2)2=x相切,且与曲线在点(1,3)处的切线垂直,则此直线方程为_________.
随机试题
以下哪些情况下票据保证行为无效?()
规划论主要解决什么样的问题?什么是线性规划?
《左传》是一部
有机磷酸酯类急性中毒表现为()
甲(18岁)上山打猎,误以为乙是野猪,开枪射击打死了乙。检察院以过失杀人罪向法院提起公诉,一审法院经审理认定甲犯过失杀人罪,判处有期徒刑3年,甲不服上诉,二审法院维持了一审判决。服刑期间,甲父一直申诉,2年后,人民法院经再审认定甲射杀乙纯属意外事件,而非过
按照对企业购进固定资产所含增值税税款能否扣除以及如何扣除的方法可将增值税划分为()。
某公司2014年有关资料如下:(1)本期商品销售收入80000元,应收账款期初余额10000元,期末余额34000元;本期预收货款4000元。(2)本期用银行支付购买原材料货款40000元;用银行存款支付工程物资货款81900元;本期购买原
下列关于安全边际和边际贡献的表述中,错误的是()。
如下图所示,在Excel中单击单元格F2,欲求出表中所列6名学生的总成绩排名,应输入的公式是()。
A、Becauseitwassimpletomanufacture.B、Becauseitwouldbemucheasiertosell.C、Becausetechnologymadeitimpossibletoma
最新回复
(
0
)