首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶方阵A≠0,满足Am=0(其中m为某正整数). (1)求A的特征值. (2)证明:A不相似于对角矩阵. (3)证明:|E+A|=1. (4)若方阵B满足AB=BA,证明:|A+B|=|B|.
设n阶方阵A≠0,满足Am=0(其中m为某正整数). (1)求A的特征值. (2)证明:A不相似于对角矩阵. (3)证明:|E+A|=1. (4)若方阵B满足AB=BA,证明:|A+B|=|B|.
admin
2017-07-26
52
问题
设n阶方阵A≠0,满足A
m
=0(其中m为某正整数).
(1)求A的特征值.
(2)证明:A不相似于对角矩阵.
(3)证明:|E+A|=1.
(4)若方阵B满足AB=BA,证明:|A+B|=|B|.
选项
答案
(1)设λ为A的任一特征值,x为对应的特征向量,则Ax=λx,两端左乘A,得A
2
x=λAx=λ
2
x,两端再左乘A,得A
3
x=λ
2
Ax=λ
3
x,如此做下去,可得A
m
x=λ
m
x.因为A
m
=0,得λ
m
x=0,又x≠0,故有λ=0,所以幂零矩阵A的特征值全为零. (2)A的特征向量为方程组(0.E一A)x=0的非零解,因为A≠0,有r(一A)≥1,故方程组Ax=0的基础解系所含向量的个数,即A的线性无关特征向量的个数为n一r(一A)≤n一1<n,所以n阶方阵A不相似于对角矩阵. (3)要证明|E+A|=1,由特征值的性质知,只要证明E+A的特征值全部为1即可.设λ为E+A的任一特征值,x为对应的特征向量,则有(E+A)x=λx,即Ax=(λ一1)x,故λ一1为A的特征值,(1)中已证A的特征值全为零,故有λ一1=0,得λ=1,由λ的任意性知E+A的特征值全为1,因此E+A的全部特征值的乘积等于1,即|E+A|=1. (4)当方阵B可逆时,欲证的等式为 |A+B|=|B|→B
—1
||A+B|=1→|B
—1
A+E|=1.利用(3),要证|B
—1
A+E|=1,只要证B
—1
A为幂零矩阵即可,等式AB=BA两端左乘B
—1
,得B
—1
AB=A,两端右乘B
—1
,得B
—1
A=AB
—1
,即A与B
—1
可交换,故由A
m
=0,得(B
—1
A)
m
=(B
—1
)
m
A
m
=0,所以,当方阵B可逆时结论成立. 当B不可逆时,即|B|=0时,欲证的等式成为|A+B|=0.因为|B|=0,故B有特征值0,即存在非零列向量ξ,使Bξ=0,故对任意正整数k,有B
k
ξ=0.注意A与B可交换,有 [*] 即齐次线性方程组(A+B)
m
x=0有非零解x=ξ,故该方程组的系数行列式为零,即 |(A+B)
m
|=|A+B|
m
=0, 故|A+B|=0,因此当B不可逆时结论也成立. 故得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/95H4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
一曲线通过点(2,3),它在两坐标轴之间的任意切线段均被切点所平分,求这曲线的方程.
设函数f(x)在区间[-1,1]上连续,则x=0是函数的().
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
利用第二类曲线积分,求下列曲线所围成的图形的面积:(1)星形线x=acos3t,y=asin3t;(2)曲线x=cost,y=sin3t.
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
设f(x)是周期为2的连续函数.证明是周期为2的周期函数.
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:y(x)<y0+一arctanx0;
随机试题
(2012年)下列金融机构中,由中国银行业监管委员会负责监管的有()。
压力表用于准确地测量锅炉上所需测量部位压力的大小,应安装合理,便于观察,且灵敏可靠。下列关于锅炉压力表安全技术要求的说法中,正确的是()。
生殖器结核的治疗,下列不恰当的是
质量计划的作用通常不包括
根据《建筑抗震设计规范》(GB50011—2010)的规定,在深厚第四系覆盖层地区,对于可液化土的液化判别,下列选项中哪个不正确?()
保险人应履行保险合同所约定的保险赔偿义务,但被保险人或受益人不能获得超过实际损失或约定保险金额的补偿。这体现了保险合同执行的()。
甲公司拟吸收合并乙公司。下列关于乙公司解散的表述中,符合公司法律制度规定的是()。
下列情形中,最有可能导致注册会计师不能执行财务报表审计的是()。
某端口的IP地址为172.16.7.131/26,则该IP地址所在网络的广播地址是()。
[*]
最新回复
(
0
)