首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶方阵A≠0,满足Am=0(其中m为某正整数). (1)求A的特征值. (2)证明:A不相似于对角矩阵. (3)证明:|E+A|=1. (4)若方阵B满足AB=BA,证明:|A+B|=|B|.
设n阶方阵A≠0,满足Am=0(其中m为某正整数). (1)求A的特征值. (2)证明:A不相似于对角矩阵. (3)证明:|E+A|=1. (4)若方阵B满足AB=BA,证明:|A+B|=|B|.
admin
2017-07-26
33
问题
设n阶方阵A≠0,满足A
m
=0(其中m为某正整数).
(1)求A的特征值.
(2)证明:A不相似于对角矩阵.
(3)证明:|E+A|=1.
(4)若方阵B满足AB=BA,证明:|A+B|=|B|.
选项
答案
(1)设λ为A的任一特征值,x为对应的特征向量,则Ax=λx,两端左乘A,得A
2
x=λAx=λ
2
x,两端再左乘A,得A
3
x=λ
2
Ax=λ
3
x,如此做下去,可得A
m
x=λ
m
x.因为A
m
=0,得λ
m
x=0,又x≠0,故有λ=0,所以幂零矩阵A的特征值全为零. (2)A的特征向量为方程组(0.E一A)x=0的非零解,因为A≠0,有r(一A)≥1,故方程组Ax=0的基础解系所含向量的个数,即A的线性无关特征向量的个数为n一r(一A)≤n一1<n,所以n阶方阵A不相似于对角矩阵. (3)要证明|E+A|=1,由特征值的性质知,只要证明E+A的特征值全部为1即可.设λ为E+A的任一特征值,x为对应的特征向量,则有(E+A)x=λx,即Ax=(λ一1)x,故λ一1为A的特征值,(1)中已证A的特征值全为零,故有λ一1=0,得λ=1,由λ的任意性知E+A的特征值全为1,因此E+A的全部特征值的乘积等于1,即|E+A|=1. (4)当方阵B可逆时,欲证的等式为 |A+B|=|B|→B
—1
||A+B|=1→|B
—1
A+E|=1.利用(3),要证|B
—1
A+E|=1,只要证B
—1
A为幂零矩阵即可,等式AB=BA两端左乘B
—1
,得B
—1
AB=A,两端右乘B
—1
,得B
—1
A=AB
—1
,即A与B
—1
可交换,故由A
m
=0,得(B
—1
A)
m
=(B
—1
)
m
A
m
=0,所以,当方阵B可逆时结论成立. 当B不可逆时,即|B|=0时,欲证的等式成为|A+B|=0.因为|B|=0,故B有特征值0,即存在非零列向量ξ,使Bξ=0,故对任意正整数k,有B
k
ξ=0.注意A与B可交换,有 [*] 即齐次线性方程组(A+B)
m
x=0有非零解x=ξ,故该方程组的系数行列式为零,即 |(A+B)
m
|=|A+B|
m
=0, 故|A+B|=0,因此当B不可逆时结论也成立. 故得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/95H4777K
0
考研数学三
相关试题推荐
求曲线x3+y3-3xy=0在点处的切线方程和法线方程.
求下列均匀曲线弧的质心:(1)半径为a,中心角为2α的圆弧;(2)心脏线ρ=a(1+cosψ),0≤ψ≤2π.
A、 B、 C、 D、 C
如下图,连续函数y=f(x)在区间[﹣3,﹣2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[﹣2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设曲线L位于xOy平面的第一象限内,L上任一点M处的切线与y轴相交,其交点记为A,如果点A至点。的距离与点A到点M的距离始终相等,且L通过点(3/2,3/2),试求L的方程.
∫01xarctanxdx=__________.
设曲线y=f(x)与y=∫0arctanxe-t2dt在原点处有相同切线,则=________.
假设随机变量X在区间[-1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于
求下列不定积分:∫e2x(1+tanx)2dx;
随机试题
沉积()是指地层剖面上相似岩性的岩石有规律重复出现的现象。
______是西方高度技术派建筑的杰作之一。
以肌肉骨骼的运动实现的程序化、自动化和完善化的外显活动方式是()
引起饮片质量变异的外因是
公共建筑是供人们进行各项社会活动的建筑物,其中理发店属于()。
光票信用证仅凭汇票即可付款而不附任何货运单据,但有时要求提供发票等非货运性质的票据。()
下列港口中属于安徽省的有()。
每年两会,人大代表的很多议案涉及民生问题。有网民说,作为选民,我们寄希望于的代言人能在大会上代表我们行使权力——实施更好的医疗保障,管好我们的“钱袋子希望他们能直言针砭,推动改革。上述材料说明()。①选民要珍惜选举权,审慎、理性投票②人大代表
一位植物学家在考察阿尔卑斯山脉的植被时,发现了一个奇怪的现象,近几百年来,高山上的植物长势茂盛,品种正在不断增加,山脚下的一些花已经开到了海拔2500米的高山雪带上,而原先雪带上的植物也同时在向更高处攀登。这位植物学家接着深入研究,最终得出了令人由衷钦佩的
一个类是______(2)。在定义类时,将属性声明为private的目的是______(3)。(3)
最新回复
(
0
)