首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
admin
2017-01-13
88
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积;
选项
答案
本题可转化为证明x
0
f(x
0
)=∫
0
1
f(x)x。令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 φ’(x
0
)=x
0
f(x
0
)一∫
0
1
f(t)dt=0。也就是 x
0
f(x
0
)=∫
0
1
f(x)dx。
解析
转载请注明原文地址:https://kaotiyun.com/show/3xt4777K
0
考研数学二
相关试题推荐
求
计算二重积分|x2+y2-1|dδ,其中D={(x,y)|0≤x≤1,0≤y≤1}.
求二元函数f(x,y)=x2(2+y2)+ylny的极值。
设z=z(x,y)是由方程x2+y2-z=ψ(x+y+z)所确定的函数,其中ψ具有2阶导数且ψ’≠-1.求dz.
设y=f(x)是区间[0,1]上的任一非负连续函数。试证:存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积。
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明:在(a,b)内存在点ξ,使得.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足证明存在ξ∈(0,1)使得f’(ξ)=2ξf(ξ).
计算二重积分,其中D={(x,y)|(x-1)2+(y-1)2≤2,y≥x}.
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
随机试题
男,5岁,平素健康,4天来高热,寒战咳嗽伴右侧胸痛,胸片提示右下肺片状影伴右侧中等量胸腔积液。关于胸腔穿刺的目的正确的是
男性,5岁,腹痛50小时伴发热48小时入院。腹痛为持续性,全腹痛,伴恶心、呕吐。查体:腹略胀,全腹肌紧张及压痛、叩击痛,以右下腹为甚。白细胞计数为17.74×109/L,中性粒细胞0.783。如术中发现右下腹局部有包裹,应注意
A、肺脾肾B、心脾肝肾C、心肺肝脾D、肺脾肾肝E、心肺脾肾与血的运行关系最为密切的是()
大城公司与小龙公司订立合同,规定大城公司应于2002年3月1日交货,小龙公司应于同年3月7日付款。2月底,大城公司发现小龙公司财产状况恶化,无支付货款之能力,并有确切证据,遂提出中止合同,但小龙公司未允。基于上述因素,大城公司于3月1日未按约定交货。依据合
城市建设用地包括:规划期限内城市建设用地的发展规模、发展方向,根据建设用地评价确定的();城市各类园林和绿地的具体布局。
按照我国《招标投标法》的规定,不允许招标人在定标过程中()。
因科研等特殊需要,输入禁止入境物的,必须提交检验检疫部门批准。( )
把给定图形中的元素重组可以得到的是:
适合多道程序运行的存储管理方法中,存储保护主要是()。
Timewas,oldpeopleknewtheirplace.Powerwaspassedtosonsanddaughters,crownsplacedonyoungerheads.Notanymore.The
最新回复
(
0
)