首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中P= (Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明结论。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中P= (Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明结论。
admin
2017-01-14
49
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。
(Ⅰ)计算P
T
DP,其中P=
(Ⅱ)利用(Ⅰ)的结果判断矩阵B-C
T
A
-1
C是否为正定矩阵,并证明结论。
选项
答案
(Ⅰ)因为P
T
= [*] (Ⅱ)由(Ⅰ)中结果知矩阵D与矩阵M=[*]合同,又因D是正定矩阵,所以矩阵M为正定矩阵,从而可知M是对称矩阵,那么B-C
T
A
-1
C是对称矩阵。 对m维零向量x=(0,0,…,0)
T
和任意n维非零向量y=(y
1
,y
2
,…y
n
)
T
,都有 [*] 可得 y
T
(B-C
T
A
-1
C)y>0, 依定义,y
T
(B-C
T
A
-1
C)y为正定二次型,所以矩阵B-C
T
A
-1
C为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/3xu4777K
0
考研数学一
相关试题推荐
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
求下列极限:
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
设随机变量X-N(0,1),Y~N(1,4)且相关系数ρXY=1,则().
设A,B皆为n阶矩阵,则下列结论正确的是().
随机试题
A.茵陈蒿汤B.茵陈五苓散C.茵陈术附汤D.黄芪建中汤E.归脾汤面目肌肤发黄,甚则晦暗不泽,肢软乏力,心悸气短,大便溏薄,舌质淡,苔薄,脉濡细。治疗宜选用
A气血充足B气火有余C气血虚弱D蓄毒日久损伤筋骨E血络受损脓色绿黑稀薄者,其病机为
高层建筑、大型民用建筑的加压给水泵应设备用泵,备用泵的容量应等于泵站中( )。
索赔费用的组成中,人工费包括()。
()负责公司所有产品的审核、决策和监督执行。
违反《证券公司监督管理条例》的规定,责令改正,给予警告,没收违法所得或违法所得不足10万元的,处以10万元以上60万元以下的罚款的情形有()。Ⅰ.证券公司未按照规定编制并向客户送交对账单,或者未按照规定建立并有效执行信息查询制度Ⅱ.
在我国,行政管理的主体是()。
2012年1一11月,我国电子信息产品进出口总额10685亿美元,同比增长4.1%,增速比1—10月提高0.8个百分点。其中,出口6273亿美元,同比增长4.5%,增速比1—10月提高0.6个百分点,占全国外贸出口的33.9%;进口4412亿美元,同比增
文摘是对较长公文摘编的惟一手段。()
WhyMoneyDoesn’tBuyHappinessWhatdotheexpertssay?[A]Allinall,itwasprobablyamistaketolookfortheanswertothe
最新回复
(
0
)