首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下述命题: ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是
下述命题: ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是
admin
2016-05-03
75
问题
下述命题:
①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;
②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;
③设f(x)在(一∞,+∞)上为正值的连续函数,则
在(一∞,+∞)上也是正值的连续函数;
④设f(x)在(一∞,+∞)上为正值的有界函数,则
在(一∞,+∞)上也是正值的有界函数,
其中正确的个数为 ( )
选项
A、1.
B、2.
C、3.
D、4.
答案
B
解析
①与③是正确的,②与④是不正确的,正确的个数为2.
①是正确的.理由如下:设x
0
∈(一∞,+∞),则它必含于某区间[a,b]中.由题设f(x)在任意闭区间[a,b]上连续,故在x
0
处连续,所以在(一∞,+∞)上连续.论证的关键是:函数f(x)的连续性是按点来讨论的.在区间上每一点连续,就说它在该区间上连续.
②是不正确的.函数f(x)在[a,b]上有界的“界”是与区间有关的.例如f(x)=x在区间[a,b]上,|f(x)|≤max{|a|,|b|}
M,这个“界”与区间[a,b]有关.容易看出,在区间(一∞,+∞)上,f(x)=x就无界了.
③是正确的.理由如下:设x
0
∈(一∞,+∞),f(x
0
)>0且f(x)在x
0
处连续,由连续函数的四则运算法则知,
在(一∞,+∞)上连续.
④是不正确的.例如函数f(x)=
,在区间(一∞,+∞)上,0<f(x)≤1.所以在(一∞,+∞)上f(x)有界。而
=+∞.
转载请注明原文地址:https://kaotiyun.com/show/41T4777K
0
考研数学三
相关试题推荐
当代资本主义在政治、经济方面发生的变化()。
群众路线是政府工作的生命线。坚持群众路线,要求各级政府坚持对人民负责的原则,这是一种境界。下列做法中能够体现这一境界的是()。
列宁得出社会主义可能在一国或数国首先取得胜利的结论依据是()。
马克思在《资本论》中指出“在一极是财富的积累,同时在另一极,即在把自己的产品作为资本来生产的阶级方面,是贫困、劳动折磨、受奴役、无知、粗野和道德堕落的积累。”这句话揭示了资本积累的一般规律是()。
“任何英雄人物的历史作用不能超出他们所处历史条件所许可的范围”,这是()。
2020年2月10日,习近平在北京调研指导新冠肺炎疫情防控工作时,用“人民战争”“总体战”“阻击战”三个词语来概括这场没有硝烟的战争。打赢这场全方位的战争,需要全社会一起坚定信心、同舟共济、科学防治、精准施策。对此分析合理的是()。
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
判断下列级数的绝对收敛性和条件收敛性
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
随机试题
男60岁,诉咀嚼时牙齿过敏,查牙面磨耗重,叩(-),探敏,冷(-),不松,牙石(+),拟诊()
下列关于异地托收承付结算期限的规定中,正确的是( )。
下列选项中,能够形成企业核心能力的有()。
下列关于每股收益列报的说法中,正确的有()。
企业的运作就是()这四个过程要素加以合理的配合,并在此基础上不停运转而形成的一系列转换过程。
关于教学策略的认识正确的是()。
在多发的网购刷单诈骗案件中,犯罪分子通过网络发布虚假招聘信息,以承诺高额报酬为诱饵,套用网购刷单流程诱骗受害人,民警在互联网上调查网购刷单诈骗案件时,不应采取的收集相关信息的做法是:
数据结构中,与所使用的计算机无关的是数据的()。
Tomcouldhardly______hisexcitementasheknewthathehadmadearealdiscovery.
Gradually,withoutseeingitclearlyforquiteawhile,IcametorealizethatsomethingisverywrongwiththewayAmericanwom
最新回复
(
0
)