首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下述命题: ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是
下述命题: ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是
admin
2016-05-03
99
问题
下述命题:
①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;
②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;
③设f(x)在(一∞,+∞)上为正值的连续函数,则
在(一∞,+∞)上也是正值的连续函数;
④设f(x)在(一∞,+∞)上为正值的有界函数,则
在(一∞,+∞)上也是正值的有界函数,
其中正确的个数为 ( )
选项
A、1.
B、2.
C、3.
D、4.
答案
B
解析
①与③是正确的,②与④是不正确的,正确的个数为2.
①是正确的.理由如下:设x
0
∈(一∞,+∞),则它必含于某区间[a,b]中.由题设f(x)在任意闭区间[a,b]上连续,故在x
0
处连续,所以在(一∞,+∞)上连续.论证的关键是:函数f(x)的连续性是按点来讨论的.在区间上每一点连续,就说它在该区间上连续.
②是不正确的.函数f(x)在[a,b]上有界的“界”是与区间有关的.例如f(x)=x在区间[a,b]上,|f(x)|≤max{|a|,|b|}
M,这个“界”与区间[a,b]有关.容易看出,在区间(一∞,+∞)上,f(x)=x就无界了.
③是正确的.理由如下:设x
0
∈(一∞,+∞),f(x
0
)>0且f(x)在x
0
处连续,由连续函数的四则运算法则知,
在(一∞,+∞)上连续.
④是不正确的.例如函数f(x)=
,在区间(一∞,+∞)上,0<f(x)≤1.所以在(一∞,+∞)上f(x)有界。而
=+∞.
转载请注明原文地址:https://kaotiyun.com/show/41T4777K
0
考研数学三
相关试题推荐
材料1 (1)没收一切土地归苏维埃政府所有,分配农民个别耕种。(2)一切土地,经苏维埃政府没收并分配后,禁止买卖。(3)分配土地后,除老幼疾病没有耕种能力及服务与公众勤务这以外,其余的人必须强制劳动。(4)以人口为标准分配土地。男女老幼平均分配。(5)
下列选项中,属于科学人生观的做人标准的有()。
经济社会是一个动态循环系统,不能长时间停摆。在确保疫情防控到位的前提下,推动非疫情防控重点地区企事业单位复工复产,恢复生产生活秩序,关系到为疫情防控提供有力物质保障,关系到()。
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
利用定积分的几何意义求出下列积分:
设f(x)为连续函数,.则Fˊ(2)等于()
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18-2Q1,p2=12-Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨
随机试题
下列哪种药物为保钾利尿药
"通调水道"依赖于肺的哪项功能()
下列何药应去油制霜用
A、二陈丸B、参贝北瓜膏C、清气化痰丸D、小青龙合剂E、清肺抑火丸肺阴虚所致的燥咳咯血忌用的非处方药是
念珠性阴道炎的典型白带是()
绞窄性肠梗阻呕吐物的性质()
对于施工机具的选择,按主要性能参数进行是为了()。
下列关于各种开挖方法的描述中,错误的是()。
德育目标确定了培养人的总体规格和要求,但必须落实到()。
首创于四川地区的(),是我国使用纸币的开始,也是世界上最早的纸币。
最新回复
(
0
)