首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
admin
2018-05-25
47
问题
设f(x)在[0,1]上有定义,且e
x
f(x)与e
-f(x)
在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
选项
答案
对任意的x
0
∈[0,1],因为e
x
f(x)与e
-f(x)
在[0,1]上单调增加,所以当x<x
0
时,有 [*] 故f(x
0
)≤f(x)≤e
x
0
-x
f(x
0
), 令x→x
0
-
,由夹逼定理得f(x
0
-0)=f(x
0
); 当x>x
0
时,有 [*] 故e
x
0
-x
f(x
0
)≤f(x)≤f(x
0
), 令x→x
0
+
,由夹逼定理得f(x
0
+0)=f(x
0
), 故f(x
0
-0)=f(x
0
+0)=f(x
0
), 即f(x)在x=x
0
处连续,由x
0
的任意性得f(x)在[0,1]上连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/47X4777K
0
考研数学三
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)-3f(1-sinx)=8x+α(z),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
在数1,,…中求出最大值.
已知a,b>e,则不等式成立的条件是________.
如图1.3-1所示,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R万元与电台广告费x1万元及报纸广告费用x2万元之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x12-10x22.(1)在广告费用不限的情况下,求最优广告
设连续型随机变量X的所有可能值在区间[a,b]之内,证明:(1)a≤EX≤b;(2)DX≤
设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi,i=1,2,…,k,用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xk,设仪器都没有系统误差,即E(Xi)=θ,i=1,2,…,k,试求:a1,a2,…,ak应取何值,使用
设是连续函数,求a,b的值.
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵A的秩为r,则正确命题是
随机试题
智力技能形成的阶段包括原型定向、原型操作和()。
A.肝包虫病和肺包虫病B.窦道和虫囊肿C.胆管炎和胆结石D.干线型肝硬化E.橡皮肿棘球绦虫引起
治疗气虚感冒,应首选
全角字符在存储和显示时要占用()标准字符位。
根据《证券法》的规定,中期报告应包括的内容有()。
1wasblind,but1wasashamedofitifitwasknown.Irefusedtouseawhitestickandhatedaskingforhelp.Afterall,1wasat
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
党的十八大提出坚持走中国特色“新四化”道路,实现工业化、信息化、城镇化、农业现代化的同步发展。其中,城镇化是现代化的必由之路,工业化的过程也就是城镇化的过程。城镇化发展的显著标志是()
以下数据结构中,不属于线性数据结构的是()。
Inthepast,theParkServicefocusedonmakingthebigscenicparksmore【C1】______andcomfort-ablefortourists.Roadswerepav
最新回复
(
0
)