首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
admin
2018-05-25
65
问题
设f(x)在[0,1]上有定义,且e
x
f(x)与e
-f(x)
在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
选项
答案
对任意的x
0
∈[0,1],因为e
x
f(x)与e
-f(x)
在[0,1]上单调增加,所以当x<x
0
时,有 [*] 故f(x
0
)≤f(x)≤e
x
0
-x
f(x
0
), 令x→x
0
-
,由夹逼定理得f(x
0
-0)=f(x
0
); 当x>x
0
时,有 [*] 故e
x
0
-x
f(x
0
)≤f(x)≤f(x
0
), 令x→x
0
+
,由夹逼定理得f(x
0
+0)=f(x
0
), 故f(x
0
-0)=f(x
0
+0)=f(x
0
), 即f(x)在x=x
0
处连续,由x
0
的任意性得f(x)在[0,1]上连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/47X4777K
0
考研数学三
相关试题推荐
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
求
设(1)求y(0),yˊ(0),并证明:(1-x2)yˊˊ-xyˊ=4;(2)求的和函数及级数的值.
设幂级数在x=0处收敛,在x=2b处发散,求幂级数的收敛半径R与收敛域,并分别求幂级数的收敛半径.
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设随机变量X1,X2,…,Xn相互独立,且Xi服从参数为λi的指数分布,其密度为求P{X1=min{X1,X2,…,Xn}}.
设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi,i=1,2,…,k,用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xk,设仪器都没有系统误差,即E(Xi)=θ,i=1,2,…,k,试求:a1,a2,…,ak应取何值,使用
设求:|一2B|;
随机试题
公募基金场内交易的一级结算由()作为结算参与人与中国结算公司完成资金交收。
法约尔思考的管理问题及关注的焦点是整个组织,因而他的管理理论被有的学者称为“一般行政管理理论”,也有的学者称他的管理理论为______。
有头疽最易发生的部位是
动脉导管未闭、室间隔缺损、房间隔缺损当有肺动脉高压时,以下哪一项胸部X线摄片时的改变为动脉导管未闭所特有的
女,30岁。肛周疼痛3天,排便时加重。查体:肛门左侧局部压痛,有波动感。血WBC11.9×109/L,首选的治疗方法是()
李某原在甲公司就职,适用不定时工作制。2012年1月,因甲公司被乙公司兼并,李某成为乙公司职工,继续适用不定时工作制。2012年12月,由于李某在年度绩效考核中得分最低,乙公司根据公司绩效考核制度中“末位淘汰”的规定,决定终止与李某的劳动关系。李某于201
按照规律办事,说明了规律的本质是()。善于抓住机遇加快发展,体现了机遇具有()。
设D为y=χ,χ=0,y=1所围成区域,则arctanydχdy=().
About10yearsagoImetanadvertisingexecutiveinNewYorkwhoexplainedthedifficultyofadvertisinganewbrandofdeodora
Tommyiscareless;hedoesn’tremember______.
最新回复
(
0
)