首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
admin
2018-05-25
76
问题
设f(x)在[0,1]上有定义,且e
x
f(x)与e
-f(x)
在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
选项
答案
对任意的x
0
∈[0,1],因为e
x
f(x)与e
-f(x)
在[0,1]上单调增加,所以当x<x
0
时,有 [*] 故f(x
0
)≤f(x)≤e
x
0
-x
f(x
0
), 令x→x
0
-
,由夹逼定理得f(x
0
-0)=f(x
0
); 当x>x
0
时,有 [*] 故e
x
0
-x
f(x
0
)≤f(x)≤f(x
0
), 令x→x
0
+
,由夹逼定理得f(x
0
+0)=f(x
0
), 故f(x
0
-0)=f(x
0
+0)=f(x
0
), 即f(x)在x=x
0
处连续,由x
0
的任意性得f(x)在[0,1]上连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/47X4777K
0
考研数学三
相关试题推荐
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则()
设当x→x0时,f(x)不是无穷大,则下述结论正确的是()
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,证明:(1)存在;(2)反常积分∫1+∞f(x)dx与无穷级数同敛散.
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[y-(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:
一商店经销某种商品,每周进货量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润500元,试计算此商店经销
设随机变量x与y相互独立,且都服从参数为1的指数分布,则随机变量Z=的概率密度为________.
设ξη是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为P(ξ=i)=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η},试写出二维随机变量(X,Y)的分布律及边缘分布律,并求P{ξ=η}.
设X的概率密度为,则Y=2X的概率密度为()
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设求B-1.
随机试题
Rh血型不合的输血反应属于哪一种超敏反应
男性,52岁,近2年来发作晕厥3次,发作时伴有心慌、心跳加快,随后短暂意识丧失而晕倒,持续时间约1分钟左右。今早上班过程中又出现心慌、心悸伴黑嚎,即来急诊,心电图发现持续性室性心动过速。以下哪一项对于诊断室性心动过速最具特征性
关于数字式记录器特点的表述,不正确的是
下列引起心力衰竭的病因中属于心脏后负荷过重的因素是
川芎的功效是延胡索的功效是
企业在正常的经营环境下满足日常的需要而建立的库存,叫做()。
谭家菜的代表名菜是()。
负责两个用户进程之间的通信,为网络和用户之间的通信提供专用的程序的OSI层次是()。
【开中法】浙江大学1999年中国古代史真题
J.Martin指出,回顾数据库的应用发展史,一般有两类数据库,即主题数据库和【】。
最新回复
(
0
)